Bhutan-India Interconnected Grid Operation and Electricity Market Transactions

Author(s):  
Pinki Debnath ◽  
K V N Pawan Kumar ◽  
Subhendu Mukherjee ◽  
S C Saxena ◽  
G Chakraborty ◽  
...  
2014 ◽  
Vol 1070-1072 ◽  
pp. 1516-1523
Author(s):  
Chun Cheng Gao ◽  
Shu Hong Shi

After the establishment of the unified and interconnected electricity market in China, electricity trading range will cover the entire State Grid operating region, and headquarters market and provincial market will become interconnected, unified and coordinated operation. Aiming at the surveillance risk under the unified and interconnected electricity market, a relatively complete surveillance risk index system is proposed. The proposed risk index system includes six first grade indices, i.e., market state, transaction plan, contract and settlement, market coordination, energy efficiency and power grid operation. The risk index system can reasonably and overall reflect the risk level of the electric power transaction under the unified and interconnected electricity market circumstances. It is useful for State Grid to achieve risk management and control of electricity trading surveillance, rectify the irregularities, and maintain a fair and impartial market order.


Author(s):  
Fu Xianyu ◽  
Zhou Hongmei ◽  
Qi-jie Jiang ◽  
Ke Fan

Aiming at the traditional day-ahead dispatching scheme of power generation, the paper proposes a power system security optimization dispatching model that considers the demand response of electricity prices under the electricity market incentive mechanism. Based on the peak and valley time-of-use electricity price, the paper establishes an incentive compensation mechanism to encourage users to be active. Participating in demand-side resource scheduling makes the effect of “peak shaving and valley filling” more pronounced. Simultaneously, to rationally configure the reserve capacity of grid operation, the system incorporates the expected power outage loss into the proposed model to ensure the grid operation safety. The analysis of calculation examples based on IEEE24 nodes shows that the power optimal dispatch model proposed in the paper considering demand response and expected outage loss can reduce the operating cost of the power grid under the premise of ensuring a certain level of reliability and realize the economy of the power system in the market environment and safe operation.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3983 ◽  
Author(s):  
Wang ◽  
Yang ◽  
Tang ◽  
Sun ◽  
Zhao

Combined cooling, heating and power (CCHP) micro-grids have the advantage of high energy efficiency, and can be integrated with renewable energies and demand response programs (DRPs). With the deepening of electricity market (EM) reforms, how to carry out operation optimization under EM circumstances will become a key problem for CCHP micro-grid development. This paper proposed a stochastic-CVaR (conditional value at risk) optimization model for CCHP micro-grid operation with consideration of EM participation, wind power accommodation and multiple DRPs. Specifically, based on the stochastic scenarios for EM clearing prices and wind power outputs uncertainties, the stochastic optimization method was applied to ensure the realization of operational cost minimization and wind power accommodation; the CVaR method was implemented to control the potential risk of operational cost increase. Moreover, by introducing multiple DRPs, the electrical, thermal and cooling loads can be transformed as flexible sources for CCHP micro-grid operation. Simulations were performed to show the following outcomes: (1) by applying the proposed stochastic-CVaR approach and considering multiple DRPs, CCHP micro-grid operation can reach better performance in terms of cost minimization, risk control and wind power accommodation etc.; (2) higher energy utilization efficiency can be achieved by coordinately optimizing EM power biddings; etc.


2013 ◽  
Vol 133 (9) ◽  
pp. 1652-1657 ◽  
Author(s):  
Takeshi Nagata ◽  
Kosuke Kato ◽  
Masahiro Utatani ◽  
Yuji Ueda ◽  
Kazuya Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document