Research on Demand Side Response System of Electricity Price Under Electricity Market Incentive Mechanism

Author(s):  
Fu Xianyu ◽  
Zhou Hongmei ◽  
Qi-jie Jiang ◽  
Ke Fan

Aiming at the traditional day-ahead dispatching scheme of power generation, the paper proposes a power system security optimization dispatching model that considers the demand response of electricity prices under the electricity market incentive mechanism. Based on the peak and valley time-of-use electricity price, the paper establishes an incentive compensation mechanism to encourage users to be active. Participating in demand-side resource scheduling makes the effect of “peak shaving and valley filling” more pronounced. Simultaneously, to rationally configure the reserve capacity of grid operation, the system incorporates the expected power outage loss into the proposed model to ensure the grid operation safety. The analysis of calculation examples based on IEEE24 nodes shows that the power optimal dispatch model proposed in the paper considering demand response and expected outage loss can reduce the operating cost of the power grid under the premise of ensuring a certain level of reliability and realize the economy of the power system in the market environment and safe operation.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4398
Author(s):  
Yiqi Li ◽  
Jing Zhang ◽  
Zhoujun Ma ◽  
Yang Peng ◽  
Shuwen Zhao

With the development of integrated energy systems (IES), the traditional demand response technologies for single energy that do not take customer satisfaction into account have been unable to meet actual needs. Therefore, it is urgent to study the integrated demand response (IDR) technology for integrated energy, which considers consumers’ willingness to participate in IDR. This paper proposes an energy management optimization method for community IES based on user dominated demand side response (UDDSR). Firstly, the responsive power loads and thermal loads are modeled, and aggregated using UDDSR bidding optimization. Next, the community IES is modeled and an aggregated building thermal model is introduced to measure the temperature requirements of the entire community of users for heating. Then, a day-ahead scheduling model is proposed to realize the energy management optimization. Finally, a penalty mechanism is introduced to punish the participants causing imbalance response against the day-ahead IDR bids, and the conditional value-at-risk (CVaR) theory is introduced to enhance the robustness of the scheduling model under different prediction accuracies. The case study demonstrates that the proposed method can reduce the operating cost of the community under the premise of fully considering users’ willingness, and can complete the IDR request initiated by the power grid operator or the dispatching department.


2013 ◽  
Vol 860-863 ◽  
pp. 746-753
Author(s):  
Shu Xiang Wang ◽  
Ji Chun Liu ◽  
Chuang Deng ◽  
Wei Dong Zheng ◽  
Hou Dong Xu ◽  
...  

To promote the development of energy-saving dispatch under the pressure of energy saving and environmental protection, this paper proposes an energy-saving dispatch method based on considering demand response, which establishes a bi-level optimization model based on the optimal allocation plan of thermal units and interruptible loads, and solve the problem with improved NSGA-II and sensitivity analysis between unit interrupt capacity and thermal unit output. The case study shows that this model can decrease the pollutants at both generation side and demand side significantly with guaranteeing the economic of power grid operation. The model can also give the dispatch schedule of thermal units and interruptible loads accurately and thus has some use value.


2021 ◽  
Vol 13 (23) ◽  
pp. 13350
Author(s):  
Haiteng Han ◽  
Chen Wu ◽  
Zhinong Wei ◽  
Haixiang Zang ◽  
Guoqiang Sun ◽  
...  

In modern power systems with more renewable energy sources connected, the consideration of both security and economy becomes the key to research on power system optimal dispatch, especially when more participants from the source and load sides join in the interaction response activities. In this paper, we propose a two-stage dispatch model that contains a day-ahead multi-objective optimization scheduling sub-model that combines a hyper-box and hyper-ellipse space theory-based system security index in the first stage, and an intraday adjustment scheduling sub-model that considers active demand response (DR) behavior in the second stage. This model is able to quantitatively analyze the relationship between the security and economy of the system dispatch process, as well as the impacts of the interaction response behavior on the wind power consumption and the system’s daily operating cost. The model can be applied to the evaluation of the response mechanism design for interactive resources in regional power systems.


2013 ◽  
Vol 380-384 ◽  
pp. 3098-3102
Author(s):  
Ning Lu ◽  
Ying Liu

The construction of grid plays an important role in national economic development, social stability and peoples life. In case that electricity market adopts real time electricity price, users active participation and real time response to electricity price will change the traditional load prediction from rigid forecasting to flexible forecasting which takes electricity demand response into consideration. By using wavelet analysis and error characteristics analysis, the researches into the probabilistic predicting method for demand changes under the real time electricity pricing is carried out. The probabilistic load prediction result shall enable decision makers to better understand the load change range in the future and make more reasonable decision. Meanwhile, it shall provide support to electricity system risk analysis.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1846 ◽  
Author(s):  
Alessia Arteconi ◽  
Fabio Polonara

The energy demand in buildings represents a considerable share of the overall energy use. Given the significance and acknowledged flexibility of thermostatically controlled loads, they represent an interesting option for the implementation of demand side management (DSM) strategies. In this paper, an overview of the possible DSM applications in the field of air conditioning and heat pumps is provided. In particular, the focus is on the heat pump sector. Three case studies are analyzed in order to assess the energy flexibility provided by DSM technologies classified as energy efficient devices, energy storage systems, and demand response programs. The load shifting potential, in terms of power and time, is evaluated by varying the system configuration. Main findings show that energy efficient devices perform strategic conservation and peak shaving strategies, energy storage systems perform load shifting, while demand response programs perform peak shaving and valley filling strategies.


2020 ◽  
Author(s):  
◽  
Zane Broka

As the 2025 deadline for synchronisation with the Continental Europe grid approaches, the Baltic transmission system operators have recognised the need to involve more local balancing resources. Additionally, demand for balancing energy is expected to rise due to the growing share of intermittent generation sources. It requires for increased flexibility of the Latvian power system. This Doctoral Thesis is focussed on improvements of power system flexibility through employment of demand-side resources and optimisation of the overall balancing process. An optimised activation strategy of reserves is proposed which can be part of the Baltic TSOs’ workflow where traditionally only human-based dispatching has been employed. Furthermore, assessment of the operating, planning and economic benefits obtainable from demand response (DR) in the Latvian power system is provided. Finally, a robust tool for an economic assessment of DR from the end-user point-of-view has been developed. Hence, the Doctoral Thesis provides an array of tools and methods on establishing the value of demand response in the Latvian power system.


2021 ◽  
Vol 19 ◽  
pp. 557-560
Author(s):  
Leo Casasola-Aignesberger ◽  
◽  
Sergio Martinez

The reduction in inertia present in electric power systems due to the increase in renewable generation interfaced with power converters presents various challenges in power system operation. One of these challenges is keeping the frequency of the system within acceptable bounds, as the reduced inertia allows faster changes in frequency. A possible way to mitigate this effect is to introduce a certain degree of frequency response in the demand side, in such a way that a loss in generation leads to a decrease in the demanded power, levelling the generation-demand balance. In this paper, one limitation of this approach is analysed, specifically the case where the demand response is excessive to the system inertia and demand, producing fast frequency oscillations. A scenario where this happens, on a simulated islanded system based on the electric power system of the island of San Cristóbal, in Galápagos (Ecuador), is studied, and a method of detecting these oscillations is proposed, as a first step to develop an appropriate response to them.


2018 ◽  
Vol 6 (3) ◽  
pp. 193-213 ◽  
Author(s):  
Jiaping Xie ◽  
Weisi Zhang ◽  
Yu Xia ◽  
Ling Liang ◽  
Lingcheng Kong

Abstract In the existing electricity market, the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side, renewable energy generators generate power by wind and other natural conditions, leading renewable energy output a certain randomness. However, the low marginal generating cost and the reduction of carbon emissions, and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity, as a special commodity, stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system, and the extra power needs to be handled for the purpose of safety. In this paper, the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply, and then the electricity market sells hybrid power to electricity consumers, the hybrid power system determines the optimal daytime price, nighttime price, and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period, and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand, and negatively related to the sensitivity coefficient of electricity price.


Sign in / Sign up

Export Citation Format

Share Document