2D Stencil Computation on Cyclone V SoC FPGA using OpenCL

Author(s):  
Iman Firmansyah ◽  
Yusuf Nur Wijayanto ◽  
Yoshiki Yamaguchi
Keyword(s):  
2019 ◽  
Vol 7 (4) ◽  
pp. 1013-1024 ◽  
Author(s):  
Jun Zhou ◽  
Yan Zhang ◽  
Weng-Fai Wong

2019 ◽  
Author(s):  
Naum Khutoryansky

An approach to building explicit time-marching stencil computation schemes for the transient 2D acoustic wave equation without using finite-difference approximations is proposed and implemented. It is based on using the integral representation formula (Poisson's formula) that provides the exact solution of the initial-value problem for the transient 2D scalar wave equation at any time point through the initial conditions. For the purpose of constructing a two-step time-marching algorithm, a modified integral representation formula involving three time levels is also employed. It is shown that integrals in the two representation formulas are exactly calculated if the initial conditions and the sought solution at each time level as functions of spatial coordinates are approximated by stencil interpolation polynomials in the neighborhood of any point in a 2D Cartesian grid. As a result, if a uniform time grid is chosen, the proposed time-marching algorithm consists of two numerical procedures: 1) the solution calculation at the first time-step through the initial conditions; 2) the solution calculation at the second and next time-steps using a generated two-step numerical scheme. Three particular explicit stencil schemes (with five, nine and 13 space points) are built using the proposed approach. Their stability regions are presented. The obtained stencil expressions are compared with the corresponding finite-difference schemes available in the literature. Their novelty features are discussed. Simulation results with new and conventional schemes are presented for two benchmark problems that have exact solutions. It is demonstrated that using the new first time-step calculation procedure instead of the conventional one can provide a significant improvement of accuracy even for later time steps.


Sign in / Sign up

Export Citation Format

Share Document