Design and Construction of a Planar Robotic Exoskeleton for Assessment of Upper Limb Movements

Author(s):  
Akbar Nikzad Goltapeh ◽  
Saeed Behzadipour ◽  
Majid Hajihosseinali
Robotica ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 19-39 ◽  
Author(s):  
M. H. Rahman ◽  
M. J. Rahman ◽  
O. L. Cristobal ◽  
M. Saad ◽  
J. P. Kenné ◽  
...  

SUMMARYTo assist physically disabled people with impaired upper limb function, we have developed a new 7-DOF exoskeleton-type robot named Motion Assistive Robotic-Exoskeleton for Superior Extremity (ETS-MARSE) to ease daily upper limb movements and to provide effective rehabilitation therapy to the superior extremity. The ETS-MARSE comprises a shoulder motion support part, an elbow and forearm motion support part, and a wrist motion support part. It is designed to be worn on the lateral side of the upper limb in order to provide naturalistic movements of the shoulder (vertical and horizontal flexion/extension and internal/external rotation), elbow (flexion/extension), forearm (pronation/supination), and wrist joint (radial/ulnar deviation and flexion/extension). This paper focuses on the modeling, design, development, and control of the ETS-MARSE. Experiments were carried out with healthy male human subjects in whom trajectory tracking in the form of passive rehabilitation exercises (i.e., pre-programmed trajectories recommended by a therapist/clinician) were carried out. Experimental results show that the ETS-MARSE can efficiently perform passive rehabilitation therapy.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0133709 ◽  
Author(s):  
Jessica Despard ◽  
Anne-Marie Ternes ◽  
Bleydy Dimech-Betancourt ◽  
Govinda Poudel ◽  
Andrew Churchyard ◽  
...  

Author(s):  
Giuseppe Averta ◽  
Cosimo Della Santina ◽  
Edoardo Battaglia ◽  
Federica Felici ◽  
Matteo Bianchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document