Control of a Wrist Telerehabilitation System Based on Recovery Indices and Reproduction of the Periodic Tasks

Author(s):  
Elahe Radmanesh ◽  
Iman Sharifi ◽  
Heidar A. Talebi
2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-26
Author(s):  
Paolo Pazzaglia ◽  
Youcheng Sun ◽  
Marco Di Natale

2014 ◽  
Vol 631-632 ◽  
pp. 761-765
Author(s):  
Jing Cun Bi ◽  
Qi Li ◽  
Wei Jun Yang ◽  
Yan Fei Liu

As for the aperiodic tasks of node in network control systems, the FC-ABS (Feedback Controlled Adaptive Bandwidth Server) scheduling algorithm is designed. The different scheduling methods are used according to time characteristics of aperiodic tasks, and feedback scheduling is used to mitigate the effect of aperiodic tasks on periodic tasks. The simulation results show that the method is effective. Keyword: Network Control Systems; Server Scheduling; Feedback Scheduling; FC-ABS.


2009 ◽  
Vol 9 (12) ◽  
pp. 52-63
Author(s):  
Myoung-Jo Jung ◽  
Moon-Haeng Cho ◽  
Joo-Man Kim ◽  
Cheol-Hoon Lee
Keyword(s):  

2021 ◽  
Vol 8 (4) ◽  
pp. 75-81
Author(s):  
Ahmed A. Alsheikhy ◽  

In real-time systems, a task or a set of tasks needs to be executed and completed successfully within a predefined time. Those systems require a scheduling technique or a set of scheduling methods to distribute the given task or the set of tasks among different processors or on a processor. In this paper, a new novel scheduling approach to minimize the overhead from context switching between several periodic tasks is presented. This method speeds up a required response time while ensuring that all tasks meet their deadline times and there is no deadline miss occurred. It is a dynamic-priority technique that works either on a uniprocessor or several processors. In particular, it is proposed to be applied on multiprocessor environments since many applications run on several processors. Various examples are presented within this paper to demonstrate its optimality and efficiency. In addition, several comparison experiments with an earlier version of this approach were performed to demonstrate its efficiency and effectiveness too. Those experiments showed that this novel approach sped up the execution time from 15% to nearly around 46%. In addition, it proved that it reduced the number of a context switch between tasks from 12% to around 50% as shown from simulation tests. Furthermore, this approach delivered all tasks/jobs successfully and ensured there was no deadline miss happened.


2007 ◽  
Vol 73 (2) ◽  
pp. 225-241 ◽  
Author(s):  
Björn Andersson ◽  
Cecilia Ekelin

Author(s):  
H. T. Manohara ◽  
B. P. Harish

With advancements in computing and communication technologies on mobile devices, the performance requirements of embedded processors have significantly increased, resulting in a corresponding increase in its energy consumption. Dynamic scaling of operating voltage and operating frequency has a strong correlation to energy minimization in CMOS real-time circuits. Simultaneous optimization of ([Formula: see text], [Formula: see text] pairs under dynamic activity levels is thus extensively investigated over several years. The supply voltage is tuned dynamically during runtime (DVS), with a fixed threshold voltage, to achieve energy minimization. This work addresses the issue of maximizing the energy efficiency of real-time periodic, aperiodic and mixed task sets, in a uniprocessor system, by developing a novel task feasibility methodology, with a novel processor performance-based constraint, to generate the optimal operating supply voltage to the individual task of task sets. The energy minimization of real-time mixed task sets is formulated as Geometric Programming (GP) problem, by varying frequency for periodic tasks sets and keeping fixed frequency for aperiodic tasks set, over a range of task sets and hence computing optimal operating voltages. Simulation experiments show energy savings on the cumulative basis of 50%, 38% and 29% for periodic, aperiodic and mixed task sets, respectively, based on the processing timing constraints of task sets.


Sign in / Sign up

Export Citation Format

Share Document