Energy Management Strategy for Maximization of Renewable Energy Consumption in Multi-microgrids

Author(s):  
Wei Jiang ◽  
Kxu Yang ◽  
Junjie Yang ◽  
Naifan Xue ◽  
Zhuhang Zhuo
Vehicles ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 341-356
Author(s):  
Daizy Rajput ◽  
Jose M. Herreros ◽  
Mauro S. Innocente ◽  
Joschka Schaub ◽  
Arash M. Dizqah

Modern hybrid electric vehicles (HEVs) like the fourth generation of Toyota Prius incorporate multiple planetary gears (PG) to interconnect various power components. Previous studies reported that increasing the number of planetary gears from one to two reduces energy consumption. However, these studies did not compare one PG and two PGs topologies at their optimal operation. Moreover, the size of the powertrain components are not the same and hence the source of reduction in energy consumption is not clear. This paper investigates the effect of the number of planetary gears on energy consumption under optimal operation of the powertrain components. The powertrains with one and two PGs are considered and an optimal simultaneous torque distribution and mode selection strategy is proposed. The proposed energy management strategy (EMS) optimally distributes torque demands amongst the power components whilst also controlling clutches (i.e., mode selection). Results show that increasing from one to two PGs reduces energy consumption by 4%.


2021 ◽  
Vol 11 (2) ◽  
pp. 498
Author(s):  
Hao Wang ◽  
Hongwen He ◽  
Jianwei Li ◽  
Yunfei Bai ◽  
Yuhua Chang ◽  
...  

Electric sanitation vehicles have increasingly been applied to cleaning work due to the requirement of air pollution control. The power distribution and energy management strategy (EMS) influence the vehicle’s performance a lot both in the aspects of cleaning effect and electricity consumption. Aiming to improve energy economy and ensure clean tasks, first, the electricity consumption percentages of the vehicle onboard devices are analyzed and the main contributors are clarified, and the power requirement model of the working motor is built based on experimental data. Second, a universal modeling method of garbage distribution on the road surface is proposed, which implements a nonlinear autoregressive neural network as the predictor. Third, an adaptive model predictive control (AMPC)-based EMS is proposed and verified. The results show the AMPC method can accurately predict the garbage density and the proposed EMS can approximate the energy consumption of the DP-based EMS with little deviation. Compared to conventional rule-based EMS, the AMPC-based EMS achieved a 15.5% decrease in energy consumption as well as a 14.6% decrease in working time.


Sign in / Sign up

Export Citation Format

Share Document