Custom multi-threaded Dynamic Memory Management for Multiprocessor System-on-Chip platforms

Author(s):  
Sotirios Xydis ◽  
Alexandros Bartzas ◽  
Iraklis Anagnostopoulos ◽  
Dimitrios Soudris ◽  
Kiamal Pekmestzi
2011 ◽  
Vol 3 (2) ◽  
pp. 66-69 ◽  
Author(s):  
Iraklis Anagnostopoulos ◽  
Sotirios Xydis ◽  
Alexandros Bartzas ◽  
Zhonghai Lu ◽  
Dimitrios Soudris ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 35-44
Author(s):  
Ali Ahmadinia

Dynamic data management for multiprocessor systems in the absence of an operating system (OS) is a challenging area of research. OSs are typically used to abstract developers from the process of managing dynamic data at runtime. However, due to the many different types of multiprocessor available, an OS is not always available, making the management of dynamic data a difficult task. In this article, we present a hardware and software co-design methodology for the management of dynamic data in multiprocessor system on chips (MPSoC) development environments without an OS. We compare and contrast the method of sharing dynamic data between cores with standard methods and also to static data management methods and find that the proposed methodology can improve the performance of dynamic memory operations by up to 72.94% with negligible power and resource consumption.


2021 ◽  
pp. 1-12
Author(s):  
Arun Prasath Raveendran ◽  
Jafar A. Alzubi ◽  
Ramesh Sekaran ◽  
Manikandan Ramachandran

This Ensuing generation of FPGA circuit tolerates the combination of lot of hard and soft cores as well as devoted accelerators on a chip. The Heterogene Multi-Processor System-on-Chip (Ht-MPSoC) architecture accomplishes the requirement of modern applications. A compound System on Chip (SoC) system designed for single FPGA chip, and that considered for the performance/power consumption ratio. In the existing method, a FPGA based Mixed Integer Programming (MIP) model used to define the Ht-MPSoC configuration by taking into consideration the sharing hardware accelerator between the cores. However, here, the sharing method differs from one processor to another based on FPGA architecture. Hence, high number of hardware resources on a single FPGA chip with low latency and power targeted. For this reason, a fuzzy based MIP and Graph theory based Traffic Estimator (GTE) are proposed system used to define New asymmetric multiprocessor heterogene framework on microprocessor (AHt-MPSoC) architecture. The bandwidths, energy consumption, wait and transmission range are better accomplished in this suggested technique than the standard technique and it is also implemented with a multi-task framework. The new Fuzzy control-based AHt-MPSoC analysis proves significant improvement of 14.7 percent in available bandwidth and 89.8 percent of energy minimized to various traffic scenarios as compared to conventional method.


Sign in / Sign up

Export Citation Format

Share Document