compound system
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 49)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 2160 (1) ◽  
pp. 012031
Author(s):  
Xiangdong Zhu ◽  
Yijun Chen ◽  
Chongguang Zang

Abstract In this study, to improve the flame retardancy properties of polypropylene, DBDPE/Sb2O3 and DBDPE/HBCD/Sb2O3 flame retardant systems were used for flame retardant PP, and a halogen-free flame retardant PP material was prepared using the one-component intumescent flame retardant PNP1D. Tensile tests, impact tests, ultimate oxygen index, UL94V-0 vertical combustion, thermogravimetric analysis, rheological analysis and scanning electron microscopy were used to study the flame retardant properties and mechanical properties of the flame retardant PP. The test results show that both the ultimate oxygen index of DBDPE/Sb2O3 compounded flame retardant PP and the ultimate oxygen index of PNP1D flame retardant PP are nearly double that of pure PP, passing the UL-94V-0 flame retardant standard. The thermal decomposition temperature range of DBDPE/Sb2O3 compounded system and the thermal decomposition temperature range of PNP1D flame retardant PP both completely cover the thermal decomposition temperature range of both the DBDPE/Sb2O3 compound system and PNP1D flame retardant PP completely covered the thermal decomposition temperature range of pure PP. The tensile and impact strength of the DBDPE/Sb2O3 flame retardant system with 10% SK-80 is 50% higher than that of the DBDPE/Sb2O3 flame retardant system without SK-80. The modified PP with 25% PNP1D is nearly 1 time higher than pure PP in terms of carbon formation and has an ideal flame retardant effect.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012041
Author(s):  
Y A Rahman ◽  
R Fauzi ◽  
M Sarjan ◽  
Sukri

Abstract This research is a simulation of the penetration of renewable energy at the primary source. The entire system is a compound system, especially on the load. Load types provide different voltage and current treatment. The simulation is carried out with a mini-grid device consisting of five buses with interface sensors to monitor voltage and current. Photovoltaic grid module (PV)-LV as a trainer, uses two power sources to supply the load to the voltage distribution network module. The loading scenario h two plans, where the difference lies in the type of inductive load (scenario A) and capacitive (scenario B). The types of load consist of incandescent lamps, fluorescent lamps, energy-saving lamps, drilling machines, and soldering tools. Variations in this load to meet predetermined loading scenarios. The PV measurement results show maximum power generation at noon and flowed to the load trainer via a 300W grid-tie inverter of 191.1W. The average load bus voltage increases for scenario A and scenario B by 1.045% and 1.36%, respectively. The result indicates that the integration of PV in low voltage systems positively impacts the voltage profile for both inductive and capacitive loads. The amount of voltage improvement depends on the value of the active power injection of the PV and the load supplied by the system.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2281
Author(s):  
Zihan Yang ◽  
Jianqiang Yang ◽  
Kai Ren

With the gradual deepening of the development of high-quality urban transformation, the “Danwei Compound” urban space production method constitutes the basis of Chinese current urban spatial transformation. The transformation plan of the original danwei compound “stock” to promote the healthy development of urban society has become the focus of research. First, with the help of Lefebvre’s space production theory, combined with the spatial transformation characteristics of its own structural form experienced by the Chinese urban danwei compound, the space production is divided into three stages, namely, the diversity-orderly type average space of the danwei compound system period, dispersed type abstract space of the commercial enclosed community period, and the integrated differential space of a livable community undergoing regeneration and transformation. At each stage, the government, market, and residents have different influences on time-space production. Secondly, using Hefei’s typical danwei compound as the research carrier, according to the space ternary dialectics, a multi-level analysis of “representations of space-representational space-spatial practice” is carried out on the production mechanism, and the logic of different types of spaces in different periods are described. Among them, the representations of space of the change of the danwei compound are the interrelationship of multiple governance subjects in different periods, such as changes in the implementation degree of governance strategies, the degree of residents’ community governance participation, residents’ satisfaction with community governance, etc. The representational space is the residents’ community perception and interpersonal relationship at different transition stages, Interpersonal trust, and other social relations’ changes. Spatial practice is manifested in changes in the support of public service facilities, public space, per capita living area, building quality, architectural style, and illegal building area. Finally, the three-dimensional space dialectical coupling coordination degree model is used to analyze and compare the representations of space of typical settlements in the three stages and the coupling characteristics of the representational space and the practice of space. On this basis, we provide innovative ideas and put forward relevant measures and suggestions for the regeneration, transformation, and development of livable areas.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8481
Author(s):  
Emiliano Pipitone ◽  
Salvatore Caltabellotta

As is widely known, internal combustion engines are not able to complete the expansion process of the gas inside the cylinder, causing theoretical energy losses in the order of 20%. Several systems and methods have been proposed and implemented to recover the unexpanded gas energy, such as turbocharging, which partially exploits this energy to compress the fresh intake charge, or turbo-mechanical and turbo-electrical compounding, where the amount of unexpanded gas energy not used by the compressor is dedicated to propulsion or is transformed into electric energy. In all of these cases, however, maximum efficiency improvements between 4% and 9% have been achieved. In this work, the authors deal with an alternative propulsion system composed of a CNG-fueled spark ignition engine equipped with a turbine-generator specifically dedicated to unexpanded exhaust gas energy recovery and with a separated electrically driven turbocompressor. The system was conceived specifically for hybrid propulsion architectures, with the electric energy produced by the turbine generator being easily storable in the on-board energy storage system and re-usable for vehicle traction. The proposed separated electric turbo-compound system has not been studied in the scientific literature, nor have its benefits ever been analyzed. In this paper, the performances of the analyzed turbo-compound system are evaluated and compared with a traditional reference turbocharged engine from a hybrid application perspective. It is demonstrated that separated electric compounding has great potential, with promising overall efficiency advantages: fuel consumption reductions of up to 15% are estimated for the same power output level.


2021 ◽  
Vol 11 (23) ◽  
pp. 11557
Author(s):  
Dong Zhao ◽  
Liyan Wang ◽  
Fangmei Liu ◽  
Dong Zhong ◽  
Min Wu

We investigate the photonic bandgaps in graphene-pair arrays. Graphene sheets are installed in a bulk substrate to form periodical graphene photonic crystal. The compound system approves a photonic band structure as a light impinges on it. Multiple stopbands are induced by changing the incident frequency of light. The stopbands widths and their central frequencies could be modulated through the graphene chemical potential. The number of stopbands decreases with the increase in the spatial period of graphene pairs. Otherwise, two full passbands are realized in the parameter space composed of the incident angle and the light frequency. This investigation has potentials applied in tunable multi-stopbands filters.


2021 ◽  
Vol 17 (10) ◽  
pp. 1984-1992
Author(s):  
Yiping Zhu ◽  
Liwei Shen ◽  
Yaozheng Zhou

To produce an effective nanoparticle-loaded delivery system for the tumor drug erlotinib for non-small cell lung cancer (NSCLC) therapy, we loaded poly(lactic co glycolic acid) (PLGA) nanoparticles with erlotinib and used them to transport the drug to a target area. NCI-H1650 cells were cultured to test the permeability, efficiency, and anti-tumor capacity of PLGA and polyethyleneimine (PEI) drug delivery systems, and an NSCLC mouse model was prepared to further test the anti-tumor efficiency of PLGA. In tests using NCI-H1650 cells, we found that PLGA could effectively transport erlotinib into tumor cells, and release the loaded drug instantly. The infiltration efficiency was significantly higher than that of the PEI delivery system, and the same results were obtained in animal tests. PLGA-erlotinib could promote apoptosis and inhibit the migration of tumor cells more effectively than PEI-erlotinib. In the NSCLC mouse model, PLGA could more effectively reduce the tumor volume and the extent of tumor markers than the PEI delivery system. Immune function was also better rescued with the use of the PLGA system. We concluded that PLGA-erlotinib may be a good choice for lung cancer therapy in the future.


2021 ◽  
Vol 8 (3) ◽  
pp. 217-236
Author(s):  
Ali H. Tarrad

Waste energy represents one of the most critical issues for the economic utilization and management of energy in modern industrial fields. This article outlines a scheme to utilize two different source temperature levels within the envelope of higher than 200 °C zones. Two regenerative organic Rankine cycles (RORC) were implemented to construct a compound regenerative organic Rankine cycle (CRORC) to improve the energy management of the sources. These two mini-cycles were integrated throughout an intermediate economizer circuit to extract a certain amount of energy from the high-temperature level mini-cycle. R-123 was circulated in the high-temperature cycle due to its high critical temperature at evaporation and condensation temperatures of 160 °C and 50 °C, respectively. R-123, R-21, and hydrocarbon R-600 were used as working fluids for the low-temperature cycle at evaporation and condensation temperatures of 130 °C and 35 °C, respectively. The R-123 fluid in the high-temperature mini-cycle was superheated to 170-240 °C, whereas the fluid in the low-temperature level was superheated to 180 °C. The results showed that the independent system (IRORC) requires more energy recovery than the compound system by a maximum of 2% to achieve the same net power output. This corresponds to the enhancement of 2% for the system net thermal efficiency of the compound (CRORC) system compared to the independent (IRORC) one. The compound (CRORC) system revealed a net thermal efficiency in the range of 14% and 15.6% for the test conditions. The mini-cycle net thermal efficiency of the low-temperature in the compound system was enhanced by a range of 2.5-5% compared to that of the independent arrangement. R-123/R-123 and R-123/R-21 systems exhibited higher net thermal efficiencies than the R-123/R-600 one by 3% and 2%, respectively. Increasing the superheat degree of the high-temperature mini-cycle from 10 °C to 80 °C for the compound system has improved the thermal efficiency by 7.6-7.9% for the examined fluid pairs and operating conditions. Keywords: compound cycle, regenerative, energy management, energy recovery, organic fluids


Author(s):  
Dalip Singh Verma ◽  
Kushmakshi .

Mass and charge distribution of the cross-section for the fission fragments obtained in the decay of hot and rotating compound system formed in the reaction 48Ca + 162Dy → 210Rn* at an incident energy 139.6 MeV has been calculated using the dynamical cluster-decay model. Isotopic composition for each element belonging to the symmetric mass region has been obtained. The shell closure at N=50 for light and at Z=50 for heavy mass binary fragments gives a deep minima in the fragmentation potential at touching configuration and governs the fission partition of the compound system. The fission fragments of the symmetric mass region have their dominating presence along with strong odd-even staggering i.e., even-Z fission fragments are more probable than the odd ones, similar to the observed trends of the yield.


Sign in / Sign up

Export Citation Format

Share Document