The parallel simulation of concentrating of weakly magnetic nanoparticles by high gradient magnetic field using GPUs

Author(s):  
Prach Chaisiri ◽  
Kanok Hournkumnuard ◽  
Chantana Chantrapornchai
2019 ◽  
Vol 19 (8) ◽  
pp. 2879-2886 ◽  
Author(s):  
Song Feng ◽  
Leilei Yang ◽  
Guang Qiu ◽  
Jiufei Luo ◽  
Rui Li ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Kanok Hournkumnuard ◽  
Banpot Dolwithayakul ◽  
Chantana Chantrapornchai

The process of high gradient magnetic separation (HGMS) using a microferromagnetic wire for capturing weakly magnetic nanoparticles in the irrotational flow of inviscid fluid is simulated by using parallel algorithm developed based on openMP. The two-dimensional problem of particle transport under the influences of magnetic force and fluid flow is considered in an annular domain surrounding the wire with inner radius equal to that of the wire and outer radius equal to various multiples of wire radius. The differential equations governing particle transport are solved numerically as an initial and boundary values problem by using the finite-difference method. Concentration distribution of the particles around the wire is investigated and compared with some previously reported results and shows the good agreement between them. The results show the feasibility of accumulating weakly magnetic nanoparticles in specific regions on the wire surface which is useful for applications in biomedical and environmental works. The speedup of parallel simulation ranges from 1.8 to 21 depending on the number of threads and the domain problem size as well as the number of iterations. With the nature of computing in the application and current multicore technology, it is observed that 4–8 threads are sufficient to obtain the optimized speedup.


2019 ◽  
Vol 9 (8) ◽  
pp. 1546 ◽  
Author(s):  
Hong Xiao ◽  
Xinyu Wang ◽  
Hongcheng Li ◽  
Jiufei Luo ◽  
Song Feng

Wear is one of the main factors of machine failure. If abnormal wear was not detected in time during the operation of a mechanical system, it probably leads to catastrophic consequences. The wear debris in the lubricating oil circuit contains much information about equipment wear. Consequently, debris detection is regarded as an effective way to detect mechanical faults. In this paper, an inductive debris sensor based on a high-gradient magnetic field is presented for high-throughput lubricating oil circuits. The excitation coil of the sensor is driven by a constant current to generate a high-gradient magnetic field, and the induction coil is wound around the flow path. When wear debris cuts the magnetic line through the flow path, a corresponding induced voltage is generated. The experimental results show that the sensor output signal is linear with the drive current and the wear debris velocity. In addition, the shortest distance between the particles that the sensor output signals can be completely separated is 25 mm. When the distance is smaller, the induced signals are superimposed.


Sign in / Sign up

Export Citation Format

Share Document