A card size energy harvesting electric power sensor for implementing existing electric appliances into HEMS

Author(s):  
Yuki Tsunoda ◽  
Chikara Tsuchiya ◽  
Yuji Segawa ◽  
Hajime Sawaya ◽  
Minoru Hasegawa ◽  
...  
2016 ◽  
Vol 16 (2) ◽  
pp. 457-463 ◽  
Author(s):  
Yuki Tsunoda ◽  
Chikara Tsuchiya ◽  
Yuji Segawa ◽  
Hajime Sawaya ◽  
Minoru Hasegawa ◽  
...  

1989 ◽  
Vol 25 (5) ◽  
pp. 3821-3823
Author(s):  
H. Yoda ◽  
S. Kurashima ◽  
M. Endoh ◽  
N. Wakatsuki

2019 ◽  
Vol 3 (2) ◽  
pp. 50
Author(s):  
Hedwigis Harindra ◽  
Agung Bambang Setio Utomo ◽  
Ikhsan Setiawan

<span>Acoustic energy harvesting is one o</span><span lang="EN-US">f</span><span> many ways to harness </span><span lang="EN-US">acoustic </span><span>noises as wasted energy into use</span><span lang="EN-US">f</span><span>ul </span><span lang="EN-US">electical </span><span>energy using an acoustic </span><span>energy harvester. </span><span>Acoustic </span><span>energy harvester t</span><span lang="EN-US">h</span><span>at tested by Dimastya (2018) </span><span lang="EN-US">which is consisted of loudspeake</span><span>r </span><span lang="EN-US">and Helmholtz resonator, </span><span>produced two-peak spectrum. It is </span><span lang="EN-US">suspected</span><span> that the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">is due t</span><span>o </span><span lang="EN-US">Helmholtz</span><span> resonator resonance and the second peak </span><span lang="EN-US">comes</span><span lang="EN-US">from the resonance of the conversion </span><span>loudspeaker. </span><span lang="EN-US">This research is to experimentally confirm the guess of the origin of the first peak. The experiments are performed by adding silencer materials on the resonator inner wall which are expected to be able to reduce the height of first peak and to know </span><span>how </span><span lang="EN-US">they</span><span> a</span><span lang="EN-US">ff</span><span>ect t</span><span>he output electric power spectrum o</span><span lang="EN-US">f</span><span> t</span><span>he acoustic energy harvester. </span><span lang="EN-US">Three different silencer materials are used, those are</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam</span><span lang="EN-US">,</span><span> with</span><span lang="EN-US"> the same thickness of</span><span> 12 cm. </span><span lang="EN-US">The r</span><span>esult</span><span lang="EN-US">s</span><span> show that glasswool absorb</span><span lang="EN-US">s</span><span> sound more e</span><span lang="EN-US">ff</span><span>ectively than acostic </span><span lang="EN-US">f</span><span>oam and styro</span><span lang="EN-US">f</span><span>oam. The use o</span><span lang="EN-US">f</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam with 12 cm thickness lowered the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">by</span><span> 90% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,5 mW), 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), and 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), respectively. </span><span lang="EN-US">Based on these results, it is concluded that the guess of the origin of the first peak is confirmed.</span>


Author(s):  
Mohammad A. Bukhari ◽  
Feng Qian ◽  
Oumar R. Barry ◽  
Lei Zuo

Abstract The study of simultaneous energy harvesting and vibration attenuation has recently been the focus in many acoustic meta-materials investigations. The studies have reported the possibility of harvesting electric power using electromechanical coupling; however, the effect of the electromechanical resonator on the obtained bandgap’s boundaries has not been explored yet. In this paper, we investigate metamaterial coupled to electromechanical resonators to demonstrate the effect of electromechanical coupling on the wave propagation analytically and experimentally. The electromechanical resonator is shunted to an external load resistor to harvest energy. We derive the analytical dispersion curve of the system and show the band structure for different load resistors and electromechanical coupling coefficients. To verify the analytical dispersion relations, we also simulate the system numerically. Furthermore, experiment is carried out to validate the analytical observations. The obtained observations can guide designers in selecting electromechanical resonator parameters for effective energy harvesting from meta-materials.


Author(s):  
Alejandra Echeverry Velasquez ◽  
Mateo Velez Quintana ◽  
Jose Alejandro Posada-Montoya ◽  
José Alfredo Palacio-Fernandez

The piezoelectricity allows the generation of electric power taking advantage of the movement of vehicles and pedestrians. Many prototypes have been made with piezoelectric generators, but at present, their commercialization and use has not been popularized due to their low power generation and energy losses. A design of an experimental prototype of an energy harvester with piezoelectric materials that reduces these losses and generates more energy thanks to the resonance with the beams is proposed in this article. An equilateral triangular tilde is designed such it will not deform when a force act on it. The tilde has four-cantilever beams, and it is designed to resonate with the natural frequency of the piezoelectric material. This is coupled to the piezoelectric device. The vibration generated on the beam, by average of a mechanical load, is used to generate more energy when it resonates. The piezoelectric is a ceramic material and generates a nominal power of 75 mW before placing it on the beam, and 375 mW after being placed on the beam. However, the energy collection circuit has losses due to its own consumption, the transmission of energy to the storage system, and in the mechanical system.


2002 ◽  
Author(s):  
Changsheng Li ◽  
Toshihiko T. Yoshino ◽  
Xiang Cui
Keyword(s):  

2011 ◽  
Vol 485 ◽  
pp. 173-176 ◽  
Author(s):  
Yoshikazu Shimura ◽  
Petr Pulpan ◽  
Ichiro Fujii ◽  
Kouichi Nakashima ◽  
Satoshi Wada

In this study, a new electric power generation measurement system was developed for piezoelectric energy harvesting using unimorph-type piezoceramics. Relationships between electric power and material constants such as d33, d31, g31, k31, e33T/e0, s11E, Qe and Qm were investigated using various lead zirconium titanate (Pb(Zr,Ti)O3, PZT) ceramics with different material constants. Using the equipment, pulse-type stress was applied to unimorph-type piezoceramics. Then, optimum measurement conditions were determined. Under these conditions, the electric power for piezoelectric energy harvesting was measured as a function of the material constants. Finally, it was clarified that for piezoelectric energy harvesting using a unimorph-type device, the figure of merit was combination of the 3 kinds of material constants such as large d31, small e33T/e0, and large s11E.


Sign in / Sign up

Export Citation Format

Share Document