Sparse decomposition of in-air sonar images for object localization

Author(s):  
Jan Steckel ◽  
Herbert Peremans
2020 ◽  
Author(s):  
Gopi Krishna Erabati

The technology in current research scenario is marching towards automation forhigher productivity with accurate and precise product development. Vision andRobotics are domains which work to create autonomous systems and are the keytechnology in quest for mass productivity. The automation in an industry canbe achieved by detecting interactive objects and estimating the pose to manipulatethem. Therefore the object localization ( i.e., pose) includes position andorientation of object, has profound ?significance. The application of object poseestimation varies from industry automation to entertainment industry and fromhealth care to surveillance. The objective of pose estimation of objects is verysigni?cant in many cases, like in order for the robots to manipulate the objects,for accurate rendering of Augmented Reality (AR) among others.This thesis tries to solve the issue of object pose estimation using 3D dataof scene acquired from 3D sensors (e.g. Kinect, Orbec Astra Pro among others).The 3D data has an advantage of independence from object texture and invarianceto illumination. The proposal is divided into two phases : An o?ine phasewhere the 3D model template of the object ( for estimation of pose) is built usingIterative Closest Point (ICP) algorithm. And an online phase where the pose ofthe object is estimated by aligning the scene to the model using ICP, providedwith an initial alignment using 3D descriptors (like Fast Point Feature Transform(FPFH)).The approach we develop is to be integrated on two di?erent platforms :1)Humanoid robot `Pyrene' which has Orbec Astra Pro 3D sensor for data acquisition,and 2)Unmanned Aerial Vehicle (UAV) which has Intel Realsense Euclidon it. The datasets of objects (like electric drill, brick, a small cylinder, cake box)are acquired using Microsoft Kinect, Orbec Astra Pro and Intel RealSense Euclidsensors to test the performance of this technique. The objects which are used totest this approach are the ones which are used by robot. This technique is testedin two scenarios, fi?rstly, when the object is on the table and secondly when theobject is held in hand by a person. The range of objects from the sensor is 0.6to 1.6m. This technique could handle occlusions of the object by hand (when wehold the object), as ICP can work even if partial object is visible in the scene.


2013 ◽  
Vol 33 (2) ◽  
pp. 476-479
Author(s):  
Yali WEI ◽  
Xianbin WEN ◽  
Yongliao ZOU ◽  
Yongchun ZHENG

ROBOT ◽  
2013 ◽  
Vol 35 (4) ◽  
pp. 439 ◽  
Author(s):  
Lin WANG ◽  
Jianfu CAO ◽  
Chongzhao HAN

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29416-29428
Author(s):  
Xiaoming Qin ◽  
Xiaowen Luo ◽  
Ziyin Wu ◽  
Jihong Shang

Author(s):  
Xiang Ma ◽  
Xuemei Li ◽  
Yuanfeng Zhou ◽  
Caiming Zhang

AbstractSmoothing images, especially with rich texture, is an important problem in computer vision. Obtaining an ideal result is difficult due to complexity, irregularity, and anisotropicity of the texture. Besides, some properties are shared by the texture and the structure in an image. It is a hard compromise to retain structure and simultaneously remove texture. To create an ideal algorithm for image smoothing, we face three problems. For images with rich textures, the smoothing effect should be enhanced. We should overcome inconsistency of smoothing results in different parts of the image. It is necessary to create a method to evaluate the smoothing effect. We apply texture pre-removal based on global sparse decomposition with a variable smoothing parameter to solve the first two problems. A parametric surface constructed by an improved Bessel method is used to determine the smoothing parameter. Three evaluation measures: edge integrity rate, texture removal rate, and gradient value distribution are proposed to cope with the third problem. We use the alternating direction method of multipliers to complete the whole algorithm and obtain the results. Experiments show that our algorithm is better than existing algorithms both visually and quantitatively. We also demonstrate our method’s ability in other applications such as clip-art compression artifact removal and content-aware image manipulation.


Sign in / Sign up

Export Citation Format

Share Document