Differentiating Color Responses in Retina Through Multielectrode Array Recordings

Author(s):  
Satarupa Biswas ◽  
Rinku Roy ◽  
Debdeep Sikdar ◽  
Soumen Das ◽  
Manjunatha Mahadevappa
2008 ◽  
Vol 174 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Martin D. Haustein ◽  
Thomas Reinert ◽  
Annika Warnatsch ◽  
Bernhard Englitz ◽  
Beatrice Dietz ◽  
...  

2017 ◽  
Author(s):  
Daniel J. O'Shea ◽  
Krishna V. Shenoy

Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation significantly complicate the detection of spiking activity on nearby recording electrodes. Here, we present ERAASR: an algorithm for Estimation and Removal of Artifacts on Arrays via Sequential principal components Regression. This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. The ERAASR algorithm requires no special hardware and comprises sequential application of straightforward linear methods with intuitive parameters. Enabling simultaneous electrical stimulation and multielectrode array recording can help elucidate the causal links between neural activity and cognitive functions and enable the design and implementation of novel sensory protheses.


2013 ◽  
Author(s):  
Stephen Eglen ◽  
Michael Weeks ◽  
Mark Jessop ◽  
Jennifer Simonotto ◽  
Tom Jackson ◽  
...  

Background: During early development, neural circuits fire spontaneously, generating activity episodes with complex spatiotemporal patterns. Recordings of spontaneous activity have been made in many parts of the nervous system over the last 20 years, reporting developmental changes in activity patterns and the effects of various genetic perturbations. Results: We present a curated repository of multielectrode array recordings of spontaneous activity in developing mouse and ferret retina. The data have been annotated with minimal metadata and converted into the HDF5 format. This paper describes the structure of the data, along with examples of reproducible research using these data files. We also demonstrate how these data can be analysed in the CARMEN workflow system. This article is written as a literate programming document; all programs and data described here are freely available. Conclusions: 1. We hope this repository will lead to novel analysis of spontaneous activity recorded in different laboratories. 2. We encourage published data to be added to the repository. 3. This repository serves as an example of how multielectrode array recordings can be stored for long-term reuse.


Sign in / Sign up

Export Citation Format

Share Document