Research on Real-Time Flood Simulation and Dynamic Risk Map

Author(s):  
Wenting Zhang ◽  
Yongzhi Liu ◽  
Jian Xu ◽  
Xiulin Liu
2021 ◽  
Author(s):  
Kay Debby Mann ◽  
Norm Good ◽  
Farhad Fatehi ◽  
Sankalp Khanna ◽  
Victoria Campbell ◽  
...  

BACKGROUND Early warning tools identify patients at risk of deterioration in hospitals. Electronic medical records in hospitals offer real-time data, and the opportunity to automate early warning tools and provide real-time, dynamic risk estimates. OBJECTIVE This review describes published studies on the development, validation and implementation of tools for prediction of patient deterioration in hospital general wards. METHODS An electronic database search of peer-reviewed journal papers 2008-2020 identified studies reporting the use of tools and algorithms for predicting patient deterioration - defined by unplanned transfer to intensive care unit (ICU), cardiac arrest, or death. Studies conducted solely in ICUs, emergency departments or on single diagnosis patient groups were excluded. RESULTS Forty-five publications, eligible for inclusion, were heterogeneous in design, setting and outcome measures. Most papers were retrospective studies utilizing cohort data to develop, validate or statistically evaluate prediction tools. Tools consisted of early warning, screening or scoring systems based on physiologic data, as well as more complex algorithms developed to better represent real-time, deal with complexities of longitudinal data and warn of deterioration risk earlier. Only a few studies detailed the results of implementation of the deterioration warning tools. CONCLUSIONS Despite relative progress on the development of algorithms to predict patient deterioration, the literature has not shown that the deployment or implementation of such algorithms is reproducibly associated with improvement of patient outcomes. Further work is needed to realise the potential of automated predictions and updating dynamic risk estimates as part of an operational early warning system for inpatient deterioration.


2016 ◽  
Author(s):  
Andrew Hartigan ◽  
Darryl Thrasher ◽  
Robin Adlam

Author(s):  
Nicola Paltrinieri ◽  
Gabriele Landucci ◽  
Pierluigi Salvo Rossi

Recent major accidents in the offshore oil and gas (O&G) industry have showed inadequate assessment of system risk and demonstrated the need to improve risk analysis. While direct causes often differ, the failure to update risk evaluation on the basis of system changes/modifications has been a recurring problem. Risk is traditionally defined as a measure of the accident likelihood and the magnitude of loss, usually assessed as damage to people, to the environment, and/or economic loss. Recent revisions of such definition include also aspects of uncertainty. However, Quantitative Risk Assessment (QRA) in the offshore O&G industry is based on consolidated procedures and methods, where periodic evaluation and update of risk is not commonly carried out. Several methodologies were recently developed for dynamic risk analysis of the offshore O&G industry. Dynamic fault trees, Markov chain models for the life-cycle analysis, and Weibull failure analysis may be used for dynamic frequency evaluation and risk assessment update. Moreover, dynamic risk assessment methods were developed in order to evaluate the risk by updating initial failure probabilities of events (causes) and safety barriers as new information are made available. However, the mentioned techniques are not widely applied in the common O&G offshore practice due to several reasons, among which their complexity has a primary role. More intuitive approaches focusing on a selected number of critical factors have also been suggested, such as the Risk Barometer or the TEC2O. Such techniques are based on the evaluation of technical, operational and organizational factors. The methodology allows supporting periodic update of QRA by collecting and aggregating a set of indicators. However, their effectiveness relies on continuous monitoring activity and realtime data capturing. For this reason, this contribution focuses on the coupling of such methods with sensors of different nature located in or around and offshore O&G system. The inheritance from the Centre for Integrated Operations in the Petroleum Industries represents the basis of such study. Such approach may be beneficial for several cases in which (quasi) real-time risk evaluation may support critical operations. Two representative cases have been described: i) erosion and corrosion issues due to sand production; and ii) oil production in environmental sensitive areas. In both the cases, dynamic risk analysis may employ real-time data provided by sand, corrosion and leak detectors. A simulation of dynamic risk analysis has demonstrated how the variation of such data can affect the overall risk picture. In fact, this risk assessment approach has not only the capability to continuously iterate and outline improved system risk pictures, but it can also compare its results with sensor-measured data and allow for calibration. This can potentially guarantee progressive improvement of the method reliability for appropriate support to safety-critical decisions.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Anurak Busaman ◽  
Somporn Chuai-Aree ◽  
Salang Musikasuwan ◽  
Rhysa McNeil

Dam-break floods are a serious disaster. This study aims to simulate and model the Mae Suai dam-break flood using shallow water equations (SWE) with an adaptive tree grid finite volume method, and determine the relationship between the initial water levels in the dam and the simulation results set regarding arrival times and maximum water depths using a polynomial model. We used elevation data obtained from the Shuttle Radar Topography Mission. The method was evaluated using the Xe-Pian dam-break flood simulation. The numerical results of water propagation was in agreement with the satellite image. The SWE and numerical algorithm was then used for the Mae Suai dam-break flood simulation. The numerical solution sets were approximated by a polynomial function of appropriate degree for flood arrival times and maximum water depth. Comparisons showed that the polynomial model results were similar to the SWE results; however, the proposed method was more efficient and can obtain a flood risk map without the need to fully solve the SWE. The method can also be applied for dam-break flood simulations and models in other regions using information from the dam.


2021 ◽  
Vol 12 ◽  
Author(s):  
John A. Donaghy ◽  
Michelle D. Danyluk ◽  
Tom Ross ◽  
Bobby Krishna ◽  
Jeff Farber

Foodborne pathogens are a major contributor to foodborne illness worldwide. The adaptation of a more quantitative risk-based approach, with metrics such as Food safety Objectives (FSO) and Performance Objectives (PO) necessitates quantitative inputs from all stages of the food value chain. The potential exists for utilization of big data, generated through digital transformational technologies, as inputs to a dynamic risk management concept for food safety microbiology. The industrial revolution in Internet of Things (IoT) will leverage data inputs from precision agriculture, connected factories/logistics, precision healthcare, and precision food safety, to improve the dynamism of microbial risk management. Furthermore, interconnectivity of public health databases, social media, and e-commerce tools as well as technologies such as blockchain will enhance traceability for retrospective and real-time management of foodborne cases. Despite the enormous potential of data volume and velocity, some challenges remain, including data ownership, interoperability, and accessibility. This paper gives insight to the prospective use of big data for dynamic risk management from a microbiological safety perspective in the context of the International Commission on Microbiological Specifications for Foods (ICMSF) conceptual equation, and describes examples of how a dynamic risk management system (DRMS) could be used in real-time to identify hazards and control Shiga toxin-producing Escherichia coli risks related to leafy greens.


2021 ◽  
Author(s):  
Lyuyu Shen ◽  
Hongliang Guo ◽  
Yechao Bai ◽  
Lei Qin ◽  
Marcelo Ang ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 163 ◽  
Author(s):  
I. Alihan Hadimlioglu ◽  
Scott A. King ◽  
Michael J. Starek

Flood modeling and analysis has been a vital research area to reduce damages caused by flooding and to make urban environments resilient against such occurrences. This work focuses on building a framework to simulate and visualize flooding in 3D using position-based fluids for real-time flood spread visualization and analysis. The framework incorporates geographical information and takes several parameters in the form of friction coefficients and storm drain information, and then uses mechanics such as precipitation and soil absorption for simulation. The preliminary results of the river flooding test case were satisfactory, as the flood extent was reproduced in 220 s with a difference of 7%. Consequently, the framework could be a useful tool for practitioners who have information about the study area and would like to visualize flooding using a particle-based approach for real-time particle tracking and flood path analysis, incorporating precipitation into their models.


2019 ◽  
Vol 9 (21) ◽  
pp. 4547 ◽  
Author(s):  
Mario Vega-Barbas ◽  
Víctor A. Villagrá ◽  
Fernando Monje ◽  
Raúl Riesco ◽  
Xavier Larriva-Novo ◽  
...  

With the increasing complexity of cyberthreats, it is necessary to have tools to understand the changing context in real-time. This document will present architecture and a prototype designed to model the risk of administrative domains, exemplifying the case of a country in real-time, specifically, Spain. In order to carry out this task, a modeling of the assets and threats detected by various sources of information has been carried out. All this information is stored as knowledge making use of ontologies, which enables the application of reasoning engines in order to infer new knowledge that can be used later in the following reasoning. This modeling and reasoning have been enriched with a dynamic system for managing the trust of the different sources of information and capabilities for increased reliability with the inclusion of additional threat intelligence information.


2011 ◽  
Vol 219-220 ◽  
pp. 1267-1270 ◽  
Author(s):  
Chuan Qi Li ◽  
Chao Jia ◽  
Bang Shu Xu

A decision support system for flood warning has been developed for Jinan city. It is a web based distributed system that integrates GIS, databases and models. Urban Flood Simulation model is used as a real-time flood forecasting model. Mike Flood model is used to simulate pre-formulated flood scenarios for urban areas. The objective of the system is to simulate and forecast river and urban floods on the basis of real-time meteorological situation and rainfall available, and to serve as a tool for making decision.


Sign in / Sign up

Export Citation Format

Share Document