A new approach of frequency domain points estimation for robust identification

Author(s):  
Jianlin Mo ◽  
Weidong Zhang ◽  
Xiaoming Xu
1995 ◽  
Author(s):  
Ilya V. Yaroslavsky ◽  
Anna N. Yaroslavsky ◽  
Hans-Joachim Schwarzmaier ◽  
Garif G. Akchurin ◽  
Valery V. Tuchin

Automatica ◽  
1998 ◽  
Vol 34 (11) ◽  
pp. 1375-1389 ◽  
Author(s):  
P.A. PARRILO ◽  
M. SZNAIER ◽  
R.S. SÁNCHEZ PEÑA ◽  
T. INANC

2009 ◽  
Vol 36 (2) ◽  
pp. 241-252 ◽  
Author(s):  
M. Naghipour ◽  
M. Mehrzadi ◽  
F. Taheri ◽  
G. P. Zou

Analytical and experimental investigation into dynamic properties of glued–laminated (glulam) beams reinforced with various lay ups of e-glass reinforced epoxy polymer (GRP) composites are discussed. Three unreinforced glulam (control) beams and 11 glulam beams reinforced with GRP on their bottom surface were clamped in a cantilever condition and tested using an instrumental hammer. The natural frequencies of all beams determined by the impact dynamic (hammer) method using power spectral density (PSD) were used to estimate damping ratio of all the beams through both time domain and frequency domain methods. In the time domain analysis, the method of logarithmic decrement analysis (LDA) and the Hilbert transform analysis (HTA) were considered; in the frequency domain analysis, both moving block analysis (MBA) and half-power bandwidth (HPB) were applied to the data and a new approach HPB method with a polynomial correction function was numerically established. A comparison between the results obtained from all the methods of analysis and a new approach shows that this method may improve the accuracy of the HPB method in evaluation of vibration damping properties of glulam reinforced composite beams because glulam beams have high level damping ratios and that this method should be modified especially when used with materials having high level damping ratios.


1981 ◽  
Vol 4 (3) ◽  
pp. 615-623
Author(s):  
Sudhangshu B. Karmakar

This paper illustrates by means of a simple example a new approach for the determination of the time domain response of a class of nonlinear systems. The system under investigation is assumed to be described by a nonlinear differential equation with forcing term. The response of the system is first obtained in terms of the input in the form of a Volterra functional expansion. Each of the components in the expansion is first transformed into a multidimensional frequency domain and then to a single dimensional frequency domain by the technique of association of variables. By taking into consideration the conditions for the rapid convergence of the functional expansion the response of the system in the frequency domain can effectively be obtained by taking only the first few terms of the expansion. Time domain response is then found by inverse Laplace transform.


Sign in / Sign up

Export Citation Format

Share Document