Underwater Long Baseline Positioning Algorithm based on Double-Parameter Constraint

Author(s):  
Haoming Li ◽  
Shefeng Yan ◽  
Lijun Xu
2018 ◽  
Vol 72 (1) ◽  
pp. 193-206 ◽  
Author(s):  
Tao Zhang ◽  
Ziqiang Wang ◽  
Yao Li ◽  
Jinwu Tong

A new acoustic positioning method for Autonomous Underwater Vehicles (AUV) that uses a single underwater hydrophone is proposed in this paper to solve problems of Long Baseline (LBL) array laying and communication synchronisation problems among all hydrophones in the traditional method. The proposed system comprises a Strapdown Inertial Navigation System (SINS), a single hydrophone installed at the bottom of the AUV and a single underwater sound source that emits signals periodically. A matrix of several virtual hydrophones is formed with the movement of the AUV. In every virtual LBL window, the time difference from the transmitted sound source to each virtual hydrophone is obtained by means of a Smooth Coherent Transformation (SCOT) weighting cross-correlation in the frequency domain. Then, the recent location of the AUV can be calculated. Simulation results indicate that the proposed method can effectively compensate for the position error of SINS. Thus, the positioning accuracy can be confined to 2 m, and the method achieves good applicability. Compared with traditional underwater acoustic positioning systems, the proposed method can provide great convenience in engineering implementation and can reduce costs.


2021 ◽  
Vol 13 (8) ◽  
pp. 1551
Author(s):  
Liwei Liu ◽  
Shuguo Pan ◽  
Wang Gao ◽  
Chun Ma ◽  
Ju Tao ◽  
...  

Quad-frequency signals have thus far been available for all satellites of BeiDou-3 and Galileo systems. The major benefit of quad-frequency signals is that more extra-wide-lane (EWL) combinations can be formed with quad-frequency than with triple- or dual-frequency, of which the ambiguities can be fixed instantaneously in medium and long baselines. In this paper, the long-baseline positioning algorithm based on optimal triple-frequency EWL/wide-lane (WL) combinations of BeiDou-3 and Galileo is proposed. First, the theoretical precision of multi-frequency combinations of BeiDou-3 and Galileo is studied, and EWL/WL combinations with a small noise amplitude factor and a small ionospheric scalar factor are selected. Then, geometry-free methods are used to estimate the a priori precision of EWL/second EWL/WL signals for different combination schemes. Second, the double-differenced (DD) geometry-based function models of quad-frequency configurations and three different triple-frequency configurations are given, and the DD ionospheric delays are estimated as unknown parameters. In the end, the real BeiDou-3 and Galileo data are used to evaluate the positioning preference. The results show that, when using fixed EWL observations to constrain WL ambiguities, the proposed triple-frequency EWL/WL signals composed of (B1I,B3I,B2a) of BeiDou-3 and (E1,E5a,E6) of Galileo can achieve the same precision as the quad-frequency signals. Therefore, the method proposed in this article can realize long-baseline instantaneous decimeter-level positioning while reducing the dimension of matrix and improving calculation efficiency.


2018 ◽  
pp. 51-54
Author(s):  
I. E. Arsaev ◽  
Yu. V. Vekshin ◽  
A. I. Lapshin ◽  
V. V. Mardyshkin ◽  
M. V. Sargsyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document