Power System Design for Resilience and Flexibility Against Extreme Weather Events

Author(s):  
Islam F. Abdin ◽  
Yiping Fang ◽  
Enrico Zio
2014 ◽  
Vol 521 ◽  
pp. 423-428
Author(s):  
Ling Ling Pan ◽  
Feng Li ◽  
Sheng Chun Yang ◽  
Shu Hai Feng ◽  
Yong Wang

Frequency and severity of some extreme weather events are increasing, and weather can impact the power system and its components in a number of ways. This paper identifies key technical issues facing the electric power industry, related to global climate change. The technical challenges arise from: 1) impacts on supply and demand balance; 2) impacts on system operating strategies, and power generation scheduling; 3) impacts on power grid structure, and power infrastructure response to extreme weather events; and 4) impacts on operation parameters of power system. The objective of this paper is to facilitate continued discussion of power systemclimate change interactions. To this end, this paper identifies key issues relating to the interactions between the electric power industry and global climate change. These issues will not be resolved quickly, and it requires sustained attention if they are to be resolved successfully.


2021 ◽  
Author(s):  
Joshua Novacheck ◽  
Justin Sharp ◽  
Marty Schwarz ◽  
Paul Donohoo-Vallett ◽  
Zach Tzavelis ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4243
Author(s):  
Kathleen Araújo ◽  
David Shropshire

Important changes are underway in the U.S. power industry in the way that electricity is sourced, transported, and utilized. Disruption from extreme weather events and cybersecurity events is bringing new scrutiny to power-system resilience. Recognizing the complex social and technical aspects that are involved, this article provides a meta-level framework for coherently evaluating and making decisions about power-system resilience. It does so by examining net-zero carbon strategies with quantitative, qualitative, and integrative dimensions across discrete location-specific systems and timescales. The generalizable framework is designed with a flexibility and logic that allows for refinement to accompany stakeholder review processes and highly localized decision-making. To highlight the framework’s applicability across multiple timescales, processes, and types of knowledge, power system outages are reviewed for extreme weather events, including 2021 and 2011 winter storms that impacted Texas, the 2017 Hurricane Maria that affected Puerto Rico, and a heatwave/wildfire event in California in August 2020. By design, the meta-level framework enables utility decision-makers, regulators, insurers, and communities to analyze and track levels of resilience safeguards for a given system. Future directions to advance an integrated science of resilience in net-zero power systems and the use of this framework are also discussed.


2018 ◽  
Author(s):  
Peter C. Balash, PhD ◽  
Kenneth C. Kern ◽  
John Brewer ◽  
Justin Adder ◽  
Christopher Nichols ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document