Real Time Application of Deep Learning Approach in Exogenous Skin Problem Identification

Author(s):  
E. Megha ◽  
Rini Jones S.B.
2021 ◽  
Vol 1828 (1) ◽  
pp. 012001
Author(s):  
Yeoh Keng Yik ◽  
Nurul Ezaila Alias ◽  
Yusmeeraz Yusof ◽  
Suhaila Isaak

2019 ◽  
Vol 199 ◽  
pp. 216-222 ◽  
Author(s):  
Seonghyeon Kim ◽  
Seokwoo Kang ◽  
Kwang Ryel Ryu ◽  
Giltae Song

2019 ◽  
Vol 34 (11) ◽  
pp. 4924-4931 ◽  
Author(s):  
Daichi Kitaguchi ◽  
Nobuyoshi Takeshita ◽  
Hiroki Matsuzaki ◽  
Hiroaki Takano ◽  
Yohei Owada ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 982 ◽  
Author(s):  
Hyo Lee ◽  
Ihsan Ullah ◽  
Weiguo Wan ◽  
Yongbin Gao ◽  
Zhijun Fang

Make and model recognition (MMR) of vehicles plays an important role in automatic vision-based systems. This paper proposes a novel deep learning approach for MMR using the SqueezeNet architecture. The frontal views of vehicle images are first extracted and fed into a deep network for training and testing. The SqueezeNet architecture with bypass connections between the Fire modules, a variant of the vanilla SqueezeNet, is employed for this study, which makes our MMR system more efficient. The experimental results on our collected large-scale vehicle datasets indicate that the proposed model achieves 96.3% recognition rate at the rank-1 level with an economical time slice of 108.8 ms. For inference tasks, the deployed deep model requires less than 5 MB of space and thus has a great viability in real-time applications.


Author(s):  
Shebin Silvister ◽  
Dheeraj Komandur ◽  
Shubham Kokate ◽  
Aditya Khochare ◽  
Uday More ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document