Design of a Static Output Feedback H-Infinity Controller for Linear Time-Invariant Systems: an LMI Approach

Author(s):  
Mehmet Nur Alpaslan Parlakci

2020 ◽  
Vol 24 (3) ◽  
pp. 409-427
Author(s):  
Klaus Röbenack ◽  
Rick Voßwinkel

This contribution deals with the static output feedback problem of linear time-invariant systems. This is still an area of active research, in contrast to the observer-based state feedback problem, which has been solved decades ago. We consider the formulation and solution of static output feedback design problems using quantifier elimination techniques. Stabilization as well as more specified eigenvalue placement scenarios are the focus of the paper.



2020 ◽  
Vol 42 (16) ◽  
pp. 3168-3182
Author(s):  
Okan Demir ◽  
Hitay Özbay

This study proposes a method for the static output feedback (SOF) stabilization of discrete time linear time invariant (LTI) systems by using a low number of sensors. The problem is investigated in two parts. First, the optimal sensor placement is formulated as a quadratic mixed integer problem that minimizes the required input energy to steer the output to a desired value. Then, the SOF stabilization, which is one of the most fundamental problems in the control research, is investigated. The SOF gain is calculated as a projected solution of the Hamilton-Jacobi-Bellman (HJB) equation for discrete time LTI system. The proposed method is compared with several examples from the literature.



2008 ◽  
Vol 31 (5) ◽  
pp. 1230-1238 ◽  
Author(s):  
Ricardo S. Sanchez-Pena ◽  
Phalguna Kumar Rachinayani ◽  
Dario H. Baldelli


2003 ◽  
Vol 125 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Guang-Hong Yang ◽  
Jian Liang Wang

This paper is concerned with the nonfragile H∞ controller design problem for linear time-invariant systems. The controller to be designed is assumed to have norm-bounded uncertainties. Design methods are presented for dynamic output (measurement) feedback. The designed controllers with uncertainty (i.e. nonfragile controllers) are such that the closed-loop system is quadratically stable and has an H∞ disturbance attenuation bound. Furthermore, these robust controllers degenerate to the standard H∞ output feedback control designs, when the controller uncertainties are set to zero.



Sign in / Sign up

Export Citation Format

Share Document