Segmentation of Spinal Canal Region in CT Images using 3D Region Growing Technique

Author(s):  
Guanghua Fu ◽  
Huimin Lu ◽  
Joo Kooi Tan ◽  
Hyoungseop Kim ◽  
Xinglong Zhu ◽  
...  
2021 ◽  
Vol 36 (9) ◽  
pp. 1294-1304
Author(s):  
Li-juan ZHANG ◽  
◽  
Run ZHANG ◽  
Dong-ming LI ◽  
Yang LI ◽  
...  

2018 ◽  
Vol 7 (2.6) ◽  
pp. 306
Author(s):  
Aravinda H.L ◽  
M.V Sudhamani

The major reasons for liver carcinoma are cirrhosis and hepatitis.  In order to  identify carcinoma in the liver abdominal CT images are used. From abdominal CT images, segmentation of liver portion using adaptive region growing, tumor segmentation from extracted liver using Simple Linear Iterative Clustering is already implemented. In this paper, classification of tumors as benign or malignant is accomplished using Rough-set classifier based on texture feature extracted using Average Correction Higher Order Local Autocorrelation Coefficients and Legendre moments. Classification accuracy achieved in proposed scheme is 90%. The results obtained are promising and have been compared with existing methods.


Author(s):  
J-L. Rose ◽  
Ch. Revol-Muller ◽  
Mo. Almajdub ◽  
Em. Chereul ◽  
Ch. Odet

2014 ◽  
Vol 33 (1) ◽  
pp. 13 ◽  
Author(s):  
Mehdi Alilou ◽  
Vassili Kovalev ◽  
Eduard Snezhko ◽  
Vahid Taimouri

Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx) framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM) is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC) image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9). Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP) volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.


2014 ◽  
Vol 644-650 ◽  
pp. 4233-4236
Author(s):  
Zhen You Zhang ◽  
Guo Huan Lou

Segmentation algorithm of CT Image is discussed in this paper. Dynamic relative fuzzy region growing algorithm is used for CT. At the beginning of the segmentation, the confidence interval region growing algorithm is used. The overlapping parts in the initial segmentation result is segmented again with the improved fuzzy connected, and then determine which region the overlapping parts belong to. Thus, the final segmentation result can be obtained. Since the algorithm contains the advantages of region growing algorithm, fuzzy connected algorithm and the region competition, the runtime of segmentation is greatly reduced and better experimental results are obtained.


Sign in / Sign up

Export Citation Format

Share Document