A study of heat sink performance in air and soil for use in a thermoelectric energy harvesting device

Author(s):  
E.E. Lawrence ◽  
G.J. Snyder
2018 ◽  
Vol 8 (12) ◽  
pp. 2641 ◽  
Author(s):  
Pedro Carvalhaes-Dias ◽  
Andreu Cabot ◽  
J. Siqueira Dias

Thermoelectric generators (TEG) can harvest solar energy during the day using solar flat panels. They can also benefit from the use of a material that stores solar energy to generate additional power at night, when the panel cools down and the energy stored in this material travels back, through the TEG. The soil can be used as the material that stores solar energy, but the performance of such systems, with the heat sink buried in the soil, depends on the ambient and the soil temperature, parameters which can change drastically with the latitude of the location where the TEG is installed. We present an experimental study with the comparison of the potential energy that can be collected from a TEG system with heat sink buried at different depths and at different latitudes: Campinas, Brazil − 22 ∘ 54 ′ 20 ′ ′ S; and Mataró, Catalonia, Spain − 41 ∘ 32 ′ 17 ′ ′ N. The potential of energy harvesting calculated during 32 winter days in Campinas is 72% of the total calculated during 205 days in Mataró. Experimental results obtained from a complete TEG system showed that in Campinas, during one day, it was possible to store 34.11 J of electrical energy in a supercapacitor. Notably, we demonstrate that the energy generated during the night by the heat stored into the soil can be as high as the energy generated during the day.


Nano Energy ◽  
2021 ◽  
pp. 106156
Author(s):  
Min Hyouk Kim ◽  
Chang Hee Cho ◽  
Jun Su Kim ◽  
Tae Uk Nam ◽  
Woo-Sik Kim ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2192 ◽  
Author(s):  
Chengbin Yu ◽  
Young Seok Song

Graphene aerogel-supported phase change material (PCM) composites sustain the initial solid state without any leakage problem when they are melted. The high portion of pure PCM in the composite can absorb or release a relatively large amount of heat during heating and cooling. In this study, these form-stable PCM composites were used to construct a thermoelectric power generator for collecting electrical energy under the external temperature change. The Seebeck effect and the temperature difference between the two sides of the thermal device were applied for thermoelectric energy harvesting. Two different PCM composites were used to collect the thermoelectric energy harvesting due to the different phase transition field in the heating and cooling processes. The graphene nano-platelet (GNP) filler was embedded to increase the thermal conductivities of PCM composites. Maximum output current was investigated by utilizing these two PCM composites with different GNP filler ratios. The thermoelectric energy harvesting efficiencies during heating and cooling were 62.26% and 39.96%, respectively. In addition, a finite element method (FEM) numerical analysis was conducted to model the output profiles.


Author(s):  
Hal Edwards ◽  
Jeff Debord ◽  
Toan Tran ◽  
Dave Freeman ◽  
Kenneth Maggio

This chapter presents a study of thermoelectric energy harvesting with nano-sized thermopiles (nTE) in a planar 65 nm silicon CMOS process. These devices generated power from a 5C temperature difference at a density comparable to commercially available thermoelectric generators, following a metric used in the research literature (Hudak, 2008). By analyzing these devices as a thermoelectric harvesting system, the authors explore the impact of additional performance metrics such as heat source/sink thermal impedance, available heat flow density, and voltage stacking, providing a more comprehensive set of criteria for evaluating the suitability of a thermal harvesting technology. The authors use their thermoelectric system theory to consider the prospects for several thermoelectric energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document