Modeling of the Thermoelectric Power Factor in Quasi-One-Dimensional Organic Crystals

Author(s):  
A. Casian ◽  
J. Stockholm ◽  
V. Dusciac ◽  
R. Dusciac ◽  
Iu. Coropceanu
2017 ◽  
Vol 110 (18) ◽  
pp. 183901 ◽  
Author(s):  
Takumi Inohara ◽  
Yoshihiko Okamoto ◽  
Youichi Yamakawa ◽  
Ai Yamakage ◽  
Koshi Takenaka

2015 ◽  
Vol 106 (9) ◽  
pp. 093101 ◽  
Author(s):  
P. Mensch ◽  
S. Karg ◽  
V. Schmidt ◽  
B. Gotsmann ◽  
H. Schmid ◽  
...  

2018 ◽  
Vol 112 (17) ◽  
pp. 173905 ◽  
Author(s):  
Yoshihiko Okamoto ◽  
Taichi Wada ◽  
Youichi Yamakawa ◽  
Takumi Inohara ◽  
Koshi Takenaka

2020 ◽  
Vol 13 (12) ◽  
pp. 125505
Author(s):  
Yuma Yoshikawa ◽  
Taichi Wada ◽  
Yoshihiko Okamoto ◽  
Yasuhiro Abe ◽  
Koshi Takenaka

2021 ◽  
pp. 102493
Author(s):  
M.A. Gharavi ◽  
D. Gambino ◽  
A. le Febvrier ◽  
F. Eriksson ◽  
R. Armiento ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


Sign in / Sign up

Export Citation Format

Share Document