scholarly journals Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.

2021 ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver Dewey ◽  
Lauren Taylor ◽  
Mitchell Trafford ◽  
...  

Abstract Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an unprecedentedly high value of power factor (14±5 mWm-1K-2) for centimeter-long weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. Our theoretical simulations show that the observed giant power factor originates from the one-dimensional quantum confinement of charge carriers, appearing when the Fermi energy is near a van Hove singularity in the electronic density of states. We fabricated a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrated high thermoelectric performance, weavablity, and scalability. The giant power factor we observed make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


RSC Advances ◽  
2017 ◽  
Vol 7 (21) ◽  
pp. 12719-12725 ◽  
Author(s):  
Xingchen Shen ◽  
Nusrat Shaheen ◽  
Aijuan Zhang ◽  
Dingfeng Yang ◽  
Wei Yao ◽  
...  

AgIn5Se8 is a promising thermoelectric material due to its low thermal conductivity. By incorporating Cd2+ ions at Ag+ lattice sites; the electron concentration is increased, resulting in greatly enhanced electrical conductivity, and a high thermoelectric power factor.


2018 ◽  
Vol 6 (14) ◽  
pp. 5627-5634 ◽  
Author(s):  
Hyun Ju ◽  
Dabin Park ◽  
Jooheon Kim

Flexible thermoelectric composite films with a high thermoelectric power factor are achieved via a solution processing procedure.


2017 ◽  
Vol 5 (31) ◽  
pp. 7845-7852 ◽  
Author(s):  
Yao Yao ◽  
Bo-Ping Zhang ◽  
Jun Pei ◽  
Yao-Chun Liu ◽  
Jing-Feng Li

A series of single-phased Cu2S1−xSex bulks were prepared by using mechanical alloying (MA) combined with spark plasma sintering (SPS). Our results suggest that the TE properties of Cu2S can be greatly enhanced by simultaneously increasing PF and decreasing κ via doping a sole Se element.


2014 ◽  
Vol 18 (sup4) ◽  
pp. S4-540-S4-543 ◽  
Author(s):  
J. Q. Cao ◽  
Q. Sun ◽  
F. F. Miao ◽  
Y. Lu ◽  
F. P. Wang ◽  
...  

2015 ◽  
Vol 3 (40) ◽  
pp. 10451-10458 ◽  
Author(s):  
S. R. Bauers ◽  
D. R. Merrill ◽  
D. B. Moore ◽  
D. C. Johnson

Synthesis and electrical properties of kinetically stabilized (PbSe)1+δ(TiSe2)n thin-film intergrowths are reported for 1 ≤ n ≤ 18. The carriers donated to the TiSe2 from PbSe are diluted with increasing n, leading to a systematic increase in the Seebeck coefficient and thermoelectric power factor.


RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20764-20772
Author(s):  
Ahmad Gharleghi ◽  
Roy-Hung Hung ◽  
Zong-Ren Yang ◽  
Rasoul Malekfar ◽  
Chia-Jyi Liu

The peak zT is attained for hydrothermally synthesized Bi0.83Zn0.05Sb0.12 nanoalloy due to the significantly enhanced thermoelectric power factor and relatively low thermal conductivity.


2016 ◽  
Vol 9 (9) ◽  
pp. 2806-2811 ◽  
Author(s):  
Hye Jeong Lee ◽  
Gopinathan Anoop ◽  
Hyeon Jun Lee ◽  
Chingu Kim ◽  
Ji-Woong Park ◽  
...  

A layer-by-layer deposition of two conducting polymers, each layer of which is a few tenths of nanometer thick, has been successfully performed to enhance the thermoelectric power factor of organic thin films.


Sign in / Sign up

Export Citation Format

Share Document