indium arsenide
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 26)

H-INDEX

30
(FIVE YEARS 4)

Author(s):  
S. A. Karandashev ◽  
T. S. Lukhmyrina ◽  
B. A. Matveev ◽  
M. A. Remennyi ◽  
A. A. Usikova

2021 ◽  
Vol 4 (12) ◽  
pp. 914-920
Author(s):  
Mamidala Saketh Ram ◽  
Karl-Magnus Persson ◽  
Austin Irish ◽  
Adam Jönsson ◽  
Rainer Timm ◽  
...  

2021 ◽  
Vol 134 ◽  
pp. 106041
Author(s):  
Sarfraz Ahmed ◽  
Abdul Jalil ◽  
Syed Zafar Ilyas ◽  
Hareem Mufti ◽  
Simeon Agathopoulos

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chandni Devi ◽  
Jnaneswari Gellanki ◽  
Håkan Pettersson ◽  
Sandeep Kumar

AbstractSolid-state sodium ion batteries are frequently referred to as the most promising technology for next-generation energy storage applications. However, developing a suitable solid electrolyte with high ionic conductivity, excellent electrolyte–electrode interfaces, and a wide electrochemical stability window, remains a major challenge. Although solid-polymer electrolytes have attracted great interest due to their low cost, low density and very good processability, they generally have significantly lower ionic conductivity and poor mechanical strength. Here, we report on the development of a low-cost composite solid polymer electrolyte comprised of poly(ethylene oxide), poly(vinylpyrrolidone) and sodium hexafluorophosphate, mixed with indium arsenide nanowires. We show that the addition of 1.0% by weight of indium arsenide nanowires increases the sodium ion conductivity in the polymer to 1.50 × 10−4 Scm−1 at 40 °C. In order to explain this remarkable characteristic, we propose a new transport model in which sodium ions hop between close-spaced defect sites present on the surface of the nanowires, forming an effective complex conductive percolation network. Our work represents a significant advance in the development of novel solid polymer electrolytes with embedded engineered ultrafast 1D percolation networks for near-future generations of low-cost, high-performance batteries with excellent energy storage capabilities.


2021 ◽  
Author(s):  
Benjamin Maglio ◽  
Lydia Jarvis ◽  
Craig P. Allford ◽  
Sara-Jayne Gillgrass ◽  
Samuel Shutts ◽  
...  

2021 ◽  
Vol 555 ◽  
pp. 149516
Author(s):  
Jacek J. Kolodziej ◽  
Dawid Wutke ◽  
Jakub Lis ◽  
Natalia Olszowska

Author(s):  
Р.М. Магомадов ◽  
Р.Р. Юшаев

В данной работе исследовано влияние проводимости полупроводника на Барьер Шотки в контакте металл полупроводник. В качестве объектов исследования выбраны контакты с алюминием следующих полупроводников: арсенида индия(InAs), арсенида галлия (GaAs)антимонида индия(InSb) и сульфида кадмия(CdS). Выбор этих кристаллов связан с тем, что ширина запрещенной зоны этих полупроводников возрастает от Еg = 0,18 эВ у арсенида индия до Еg = 2,53 эВ у сульфида кадмия, что соответствует поставленной задаче в данной работе. In this paper, the influence of the conductivity of a semiconductor on the Schottky Barrier in the metal-semiconductor contact is investigated. Contacts with aluminum of the following semiconductors were selected as objects of research: indium arsenide(InAs), gallium arsenide (GaAs), indium antimonide(InSb), and cadmium sulfide(CDs). The choice of these crystals is due to the fact that the band gap of these semiconductors increases from U = 0.18 eV for indium arsenide to U =eV for cadmium sulfide, which corresponds to the task in this paper.


Nano Letters ◽  
2021 ◽  
Author(s):  
Daryl Darwan ◽  
Li Jun Lim ◽  
Tian Wang ◽  
Hadhi Wijaya ◽  
Zhi-Kuang Tan

Sign in / Sign up

Export Citation Format

Share Document