An Enhanced Relay Selection Scheme for NOMA-based Cooperative Opportunistic Multicast Scheme

Author(s):  
Yufang Zhang ◽  
Xiaoxiang Wang ◽  
Dongyu Wang ◽  
Qiang Zhao ◽  
Yibo Zhang
Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 544 ◽  
Author(s):  
Yufang Zhang ◽  
Xiaoxiang Wang ◽  
Dongyu Wang ◽  
Qiang Zhao ◽  
Yibo Zhang

The original user relay (UR) selection scheme of non-orthogonal multiple access-based cooperative opportunistic multicast scheme, which realizes inter-group cooperation between two multicast groups, ignores the distribution trend of candidate UR in the cell and adopts fixed efficient relay selection range (ERSR) to select UR. It results in high UR selection ratio. Then the coverage efficiency, defined as the ratio of successfully received users to URs, is low. To tackle this problem, a range-division user relay (RDUR) selection scheme is proposed in this paper. Firstly, it divides the circular coverage range of base station into several continuous annular areas (AAs). Secondly, different ERSRs are assigned to unsuccessfully received users in different AAs. Under different ERSR assignments, the performances of UR selection ratio and coverage ratio are analyzed. Lastly, the radius set of ERSR that optimizes system coverage efficiency is used to perform UR selection. From simulation results, with different radius sets, analytical results of UR selection ratio and coverage ratio match well with their simulated ones. It is proved that ERSR allocation affects UR selection ratio and coverage ratio. With RDUR scheme, coverage efficiency increases by at least 14% and capacity efficiency has also been improved.


Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang V. Nguyen

Objective: In this paper, Decode-and-Forward (DF) mode is deployed in the Relay Selection (RS) scheme to provide better performance in cooperative downlink Non-orthogonal Multiple Access (NOMA) networks. In particular, evaluation regarding the impact of the number of multiple relays on outage performance is presented. Methods: As main parameter affecting cooperative NOMA performance, we consider the scenario of the fixed power allocations and the varying number of relays. In addition, the expressions of outage probabilities are the main metric to examine separated NOMA users. By matching related results between simulation and analytical methods, the exactness of derived formula can be verified. Results: The intuitive main results show that in such cooperative NOMA networks, the higher the number of relays equipped, the better the system performance can be achieved. Conclusion: DF mode is confirmed as a reasonable selection scheme to improve the transmission quality in NOMA. In future work, we will introduce new relay selections to achieve improved performance.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 36246-36258 ◽  
Author(s):  
Ghulam Shabbir ◽  
Jamil Ahmad ◽  
Waseem Raza ◽  
Yasar Amin ◽  
Adeel Akram ◽  
...  

2019 ◽  
Vol 32 (15) ◽  
pp. e4105 ◽  
Author(s):  
Shao-I Chu ◽  
Bing-Hong Liu ◽  
Ngoc-Tu Nguyen

Sign in / Sign up

Export Citation Format

Share Document