Adaptive dynamic control for trajectory tracking with a quadrotor

Author(s):  
Milton Santos ◽  
Claudio Rosales ◽  
Jorge Sarapura ◽  
Mario Sarcinelli-Filho ◽  
Ricardo Carelli
Author(s):  
ShengChao Zhen ◽  
WangXu Cui ◽  
XiaoLi Liu ◽  
GuanJun Meng ◽  
Ye-Hwa Chen

In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controller is composed of two parts: one is a nominal control term designed based on the dynamical model, aiming to stabilize the nominal robot system; the other is a robust control term based on the Lyapunov method, aiming to eliminate the influence of uncertainty on tracking performance, where the uncertainties include nonlinear friction, parameter uncertainty, and external disturbances. The Lyapunov minimax method is adopted to prove that the system is uniformly bounded and uniformly ultimately bounded. We performed numerical simulation and experimental validation based on an actual collaborative robot joint module experimental platform and the rapid controller prototype cSPACE. The numerical simulation and experimental results show that the controller has excellent control performance for the collaborative robot joint module and provides more accurate trajectory tracking under the influence of uncertainties.


Sign in / Sign up

Export Citation Format

Share Document