Advanced Mobility Models for Ad Hoc Network Simulations

Author(s):  
A.H. Souley ◽  
S. Cherkaoui
Author(s):  
Safaa Laqtib ◽  
Khalid El Yassini ◽  
Moulay Lahcen Hasnaoui

<p>Mobile Ad Hoc Network (MANET) consists of a group of mobile or wireless nodes that are placed randomly and dynamically that causes the continual change between nodes. A mobility model attempts to mimic the movement of real mobile nodes that change the speed and direction with time. The mobility model that accurately represents the characteristics of the mobile nodes in an ad hoc network is the key to examine whether a given protocol. The aim of this paper is to compare the performance of four different mobility models (i.e. Random Waypoint, Random Direction, Random walk, and Steady-State Random Waypoint) in MANET. These models were configured with Optimized Link State Routing (OLSR) protocol under three QoS (Quality of Service) <a title="Learn more about Metrics" href="https://www.sciencedirect.com/topics/engineering/metrics">metrics</a> such as the Packet Delivery Ratio (PDR), Throughput, End-to-End delay. The simulation results show the effectiveness of Steady-State Random Waypoint Mobility Models and encourage further investigations to extend it in order to guarantee other QoS requirements.</p>


Author(s):  
Shrirang Ambaji Kulkarni ◽  
G. Raghavendra Rao

Vehicular Ad Hoc Networks represent a specialized application of Mobile Ad Hoc Networks. Here the mobile nodes move in lanes and their mobility can be modeled based on realistic traffic scenarios. To meet the above challenge the goal of defining the mobility model for vehicular ad hoc network along with a realistic traffic pattern is an important research area. Vehicular mobility is characterized by acceleration, deceleration, possibility of different lanes and intelligent driving patterns. Also a modeling of traffic is necessary to evaluate a vehicular ad hoc network in a highway environment. The traffic model has to take into account the driver behavior in order to take decisions of when to overtake, change lanes, accelerate and decelerate. To overcome the limitation of traditional mobility models and mimic traffic models, many traffic model based simulators like CORSIM, PARAMICS and MOVE have been proposed. In this chapter we provide taxonomy of mobility models and analyze their implications. To study the impact of mobility model on routing protocol for vehicular motion of nodes we analyze the performance of mobility models with suitable metrics and study their correlation with routing protocol. We also discuss the fundamentals of traffic engineering and provide an insight into traffic dynamics with the Intelligent Driver Model along with its lane changing behavior.


Sign in / Sign up

Export Citation Format

Share Document