A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids

Author(s):  
Sara Atef ◽  
Amr B. Eltawil
Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 122 ◽  
Author(s):  
Maheen Zahid ◽  
Fahad Ahmed ◽  
Nadeem Javaid ◽  
Raza Abbasi ◽  
Hafiza Zainab Kazmi ◽  
...  

Short-Term Electricity Load Forecasting (STELF) through Data Analytics (DA) is an emerging and active research area. Forecasting about electricity load and price provides future trends and patterns of consumption. There is a loss in generation and use of electricity. So, multiple strategies are used to solve the aforementioned problems. Day-ahead electricity price and load forecasting are beneficial for both suppliers and consumers. In this paper, Deep Learning (DL) and data mining techniques are used for electricity load and price forecasting. XG-Boost (XGB), Decision Tree (DT), Recursive Feature Elimination (RFE) and Random Forest (RF) are used for feature selection and feature extraction. Enhanced Convolutional Neural Network (ECNN) and Enhanced Support Vector Regression (ESVR) are used as classifiers. Grid Search (GS) is used for tuning of the parameters of classifiers to increase their performance. The risk of over-fitting is mitigated by adding multiple layers in ECNN. Finally, the proposed models are compared with different benchmark schemes for stability analysis. The performance metrics MSE, RMSE, MAE, and MAPE are used to evaluate the performance of the proposed models. The experimental results show that the proposed models outperformed other benchmark schemes. ECNN performed well with threshold 0.08 for load forecasting. While ESVR performed better with threshold value 0.15 for price forecasting. ECNN achieved almost 2% better accuracy than CNN. Furthermore, ESVR achieved almost 1% better accuracy than the existing scheme (SVR).


Author(s):  
Jindřich Pokora

The literature suggests that, in short‑term electricity‑price forecasting, a combination of ARIMA and support vector regression (SVR) yields performance improvement over separate use of each method. The objective of the research is to investigate the circumstances under which these hybrid models are superior for day‑ahead hourly price forecasting. Analysis of the Nord Pool market with 16 interconnected areas and 6 investigated monthly periods allows not only for a considerable level of generalizability but also for assessment of the effect of transmission congestion since this causes differences in prices between the Nord Pool areas. The paper finds that SVR, SVRARIMA and ARIMASVR provide similar performance, at the same time, hybrid methods outperform single models in terms of RMSE in 98 % of investigated time series. Furthermore, it seems that higher flexibility of hybrid models improves modeling of price spikes at a slight cost of imprecision during steady periods. Lastly, superiority of hybrid models is pronounced under transmission congestions, measured as first and second moments of the electricity price.


2015 ◽  
Author(s):  
Intan Azmira binti Wan Abdul Razak ◽  
Izham bin Zainal Abidin ◽  
Yap Keem Siah ◽  
Titik Khawa binti Abdul Rahman ◽  
M. Y. Lada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document