scholarly journals Hybrid ARIMA and Support Vector Regression in Short‑term Electricity Price Forecasting

Author(s):  
Jindřich Pokora

The literature suggests that, in short‑term electricity‑price forecasting, a combination of ARIMA and support vector regression (SVR) yields performance improvement over separate use of each method. The objective of the research is to investigate the circumstances under which these hybrid models are superior for day‑ahead hourly price forecasting. Analysis of the Nord Pool market with 16 interconnected areas and 6 investigated monthly periods allows not only for a considerable level of generalizability but also for assessment of the effect of transmission congestion since this causes differences in prices between the Nord Pool areas. The paper finds that SVR, SVRARIMA and ARIMASVR provide similar performance, at the same time, hybrid methods outperform single models in terms of RMSE in 98 % of investigated time series. Furthermore, it seems that higher flexibility of hybrid models improves modeling of price spikes at a slight cost of imprecision during steady periods. Lastly, superiority of hybrid models is pronounced under transmission congestions, measured as first and second moments of the electricity price.

Author(s):  
Hui He ◽  
Rui Zhang ◽  
Kaihang Li ◽  
Yongjun Jie ◽  
Runhai Jiao ◽  
...  

Background: Electricity price forecasting is still a challenging issue as it plays an essential role in balancing electricity generation and consumption. Probabilistic electricity price forecasting not only provides deterministic price forecasts but also effectively quantifies the uncertainty of electricity price. Methods: This paper introduces a new short-term electricity price forecasting approach called SASVQR, which is based on support vector quantile regression (SVQR) optimized by simulated annealing algorithm. In this study, SVQR is employed to obtain the conditional quantiles of the electricity under different quantile points, while the simulated annealing algorithm is applied to optimize each SVR model. Then the kernel density estimation takes these conditional quantiles as inputs and generates the probability density functions for future electricity prices. Result: The proposed algorithm is assessed in three datasets: the GEFCom 2014, two real electricity price datasets from the PJM market and the Singapore market. Three popular probabilistic forecasting criteria, namely prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW), and coverage width-based criterion (CWC), are utilized to evaluate the numerical experiment results..It shows the promising forecasting performance, robustness, and effectiveness of SASVQR on different datasets. Conclusion: The SASVQR method can effectively forecast the short-term electricity price compared with other methods.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document