Generalized Power and Current Control for Three-Phase Four-Wire Converter under Unbalanced Grid Conditions

Author(s):  
Jun Ge ◽  
Zhikang Shuai ◽  
Huimin Zhao ◽  
Z. John Shen
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3389 ◽  
Author(s):  
Chivon Choeung ◽  
Meng Leang Kry ◽  
Young Il Lee

This paper presents a robust control technique for three-phase chargers under unbalanced grid conditions. The control method consists of inner-loop robust grid-current control and outer-loop proportional integral control for constant current (CC) and constant voltage (CV) control. A dual-current control for the inner-loop positive and negative sequence is employed to eliminate the unbalanced current caused by the grid so that a constant current and voltage can be provided to the batteries. The inner-loop robust controllers utilize state feedback with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the L-filter.


2018 ◽  
Vol 11 (7) ◽  
pp. 1161-1168 ◽  
Author(s):  
Xiong Du ◽  
Shida Gu ◽  
Guoning Wang ◽  
Heng‐Ming Tai ◽  
Yongliang Ji

2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 876-888
Author(s):  
Yuanbin He ◽  
Bangchao Wang ◽  
Xiaogao Xie ◽  
Lei Shen ◽  
Pingliang Zeng

Sign in / Sign up

Export Citation Format

Share Document