A simple current control method for three-phase VSC in DSRF under unbalanced grid condition

Author(s):  
Xiong Du ◽  
Shida Gu ◽  
Guoning Wang ◽  
Pengju Sun ◽  
Heng-Ming Tai ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3389 ◽  
Author(s):  
Chivon Choeung ◽  
Meng Leang Kry ◽  
Young Il Lee

This paper presents a robust control technique for three-phase chargers under unbalanced grid conditions. The control method consists of inner-loop robust grid-current control and outer-loop proportional integral control for constant current (CC) and constant voltage (CV) control. A dual-current control for the inner-loop positive and negative sequence is employed to eliminate the unbalanced current caused by the grid so that a constant current and voltage can be provided to the batteries. The inner-loop robust controllers utilize state feedback with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the L-filter.


2018 ◽  
Vol 11 (7) ◽  
pp. 1161-1168 ◽  
Author(s):  
Xiong Du ◽  
Shida Gu ◽  
Guoning Wang ◽  
Heng‐Ming Tai ◽  
Yongliang Ji

2012 ◽  
Vol 241-244 ◽  
pp. 636-640
Author(s):  
Wu Wu Tang ◽  
Liang Liang Chen ◽  
Hong Xu Yin ◽  
Hao Dong

This paper developed a mathematical model of three-phase PV grid-connected inverter, and studied the grid-connected current control method based on PI control in synchronous rotating reference frame. Simulation and experimental results from the prototype of 30kW three-phase PV grid-connected inverter proved the correctness and the feasibility of the control strategy, and this grid-connected inverter can operate at the unity power factor state with a nice dynamic performance, and the output current has high sinusoidal and low harmonic content as well as good symmetry.


2017 ◽  
Vol 27 (02) ◽  
pp. 1850028 ◽  
Author(s):  
Eedara Aswani Kumar ◽  
Koritala Chandra Sekhar ◽  
Rayapudi Srinivasa Rao

This paper presents a reduced control set model predictive control (RCSMPC) method for three-phase T-type neutral-point-clamped (NPC) inverter. The whole control set (WCS) consists of all the 27 switching states of T-type NPC inverter. The reduced control set (RCS) with 19 switching states is formed from WCS by excluding the switching states with common mode voltage (CMV) value higher than one-sixth of input DC voltage [Formula: see text]. With RCS, single-objective model predictive current control method can restrict the CMV peak value to [Formula: see text]. To further reduce the CMV below this threshold, a cost function with the weighted sum of two control targets is formulated in the RCSMPC method. The two control targets of RCSMPC method are CMV mitigation and load current control. The weight for CMV is called bias factor. The RCSMPC method is computationally efficient, as the number of switching states is less than that of WCSMPC. To further reduce the computational burden, CMV values corresponding to all the switching states are calculated offline and stored in memory. Robustness of both the methods is investigated with parameter deviations at different bias factors and reference currents. The proposed method is validated using simulation and experimental results and compared with the existing methods.


Sign in / Sign up

Export Citation Format

Share Document