A compact differential bandpass filter with controllable common-mode transmission zero based on Coupled Cross-Shaped Resonator with short termination

Author(s):  
Hui Wang ◽  
Kam-Weng Tam ◽  
Sut-Kam Ho ◽  
Wen Wu
2016 ◽  
Vol 9 (5) ◽  
pp. 1029-1035 ◽  
Author(s):  
Jugul Kishor ◽  
Binod K. Kanaujia ◽  
Santanu Dwari ◽  
Ashwani Kumar

Synthesis of differential-mode bandpass filter (BPF) with good common-mode suppression has been described and demonstrated on the basis of ring dielectric resonator (RDR) for high-performance communication system. A RDR with two pairs of feeding lines has been used to excite TE01δ-mode. This unique combination of feeding lines and the ring resonator creates a differential passband. Meanwhile, TM01δ-mode of the DR can also be excited to achieve common-mode rejection in the stopband. Transmission zeros are created in the lower and upper stopband to further improve the selectivity of the proposed BPF. A second-order differential BPF is designed, fabricated and its performance is measured to validate the concept. There is good agreement between simulated and measured results.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Junzhe Shen ◽  
Tian Qiang ◽  
Minjia Gao ◽  
Yangchuan Ma ◽  
Junge Liang ◽  
...  

In this paper, a bandpass filter (BPF) was developed utilizing GaAs-based integrated passive device technology which comprises an asymmetrical spiral inductor and an interleaved array capacitor, possessing two tuning modes: coarse-tuning and fine-tuning. By altering the number of layers and radius of the GaAs substrate metal spheres, capacitance variation from 0.071 to 0.106 pF for coarse-tuning, and of 0.0015 pF for fine-tuning, can be achieved. Five air bridges were employed in the asymmetrical spiral inductor to save space, contributing to a compact chip area of 0.015λ0 × 0.018λ0. The BPF chip was installed on the printed circuit board artwork with Au bonding wire and attached to a die sink. Measured results demonstrate an insertion loss of 0.38 dB and a return loss of 21.5 dB at the center frequency of 2.147 GHz. Furthermore, under coarse-tuning mode, variation in the center frequency from 1.956 to 2.147 GHz and transmission zero frequency from 4.721 to 5.225 GHz can be achieved. Under fine-tuning mode, the minimum tuning value and the average tuning value of the proposed BPF can be accurate to 1.0 MHz and 4.7 MHz for the center frequency and 1.0 MHz and 12.8 MHz for the transmission zero frequency, respectively.


2019 ◽  
Vol 14 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Kaijun Song ◽  
Xi Wang ◽  
Maoyu Fan ◽  
Yuxuan Chen ◽  
Shema Richard Patience ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document