spiral inductor
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 3)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Junzhe Shen ◽  
Tian Qiang ◽  
Minjia Gao ◽  
Yangchuan Ma ◽  
Junge Liang ◽  
...  

In this paper, a bandpass filter (BPF) was developed utilizing GaAs-based integrated passive device technology which comprises an asymmetrical spiral inductor and an interleaved array capacitor, possessing two tuning modes: coarse-tuning and fine-tuning. By altering the number of layers and radius of the GaAs substrate metal spheres, capacitance variation from 0.071 to 0.106 pF for coarse-tuning, and of 0.0015 pF for fine-tuning, can be achieved. Five air bridges were employed in the asymmetrical spiral inductor to save space, contributing to a compact chip area of 0.015λ0 × 0.018λ0. The BPF chip was installed on the printed circuit board artwork with Au bonding wire and attached to a die sink. Measured results demonstrate an insertion loss of 0.38 dB and a return loss of 21.5 dB at the center frequency of 2.147 GHz. Furthermore, under coarse-tuning mode, variation in the center frequency from 1.956 to 2.147 GHz and transmission zero frequency from 4.721 to 5.225 GHz can be achieved. Under fine-tuning mode, the minimum tuning value and the average tuning value of the proposed BPF can be accurate to 1.0 MHz and 4.7 MHz for the center frequency and 1.0 MHz and 12.8 MHz for the transmission zero frequency, respectively.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 508
Author(s):  
Wei Yue ◽  
Eun-Seong Kim ◽  
Bao-Hua Zhu ◽  
Jian Chen ◽  
Jun-Ge Liang ◽  
...  

In this study, we propose a high-performance resonator-based biosensor for mediator-free glucose identification. The biosensor is characterized by an air-bridge capacitor and fabricated via integrated passive device technology on gallium arsenide (GaAs) substrate. The exterior design of the structure is a spiral inductor with the air-bridge providing a sensitive surface, whereas the internal capacitor improves indicator performance. The sensing relies on repolarization and rearrangement of surface molecules, which are excited by the dropped sample at the microcosmic level, and the resonance performance variation corresponds to the difference in glucose concentration at the macroscopic level. The air-bridge capacitor in the modeled RLC circuit serves as a bio-recognition element to glucose concentration (εglucoseC0), generating resonant frequency shifts at 0.874 GHz and 1.244 GHz for concentrations of 25 mg/dL and 300 mg/dL compared to DI water, respectively. The proposed biosensor exhibits excellent sensitivity at 1.38 MHz per mg/dL with a wide detection range for glucose concentrations of 25–300 mg/dL and a low detection limit of 24.59 mg/dL. Additionally, the frequency shift and concentration are highly linear with a coefficient of determination of 0.98823. The response time is less than 3 s. We performed multiple experiments to verify that the surface morphology reveals no deterioration and chemical binding, thus validating the reusability and reliability of the proposed biosensor.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2897
Author(s):  
Claudia Pacurar ◽  
Vasile Topa ◽  
Adina Giurgiuman ◽  
Calin Munteanu ◽  
Claudia Constantinescu ◽  
...  

This paper deals with high frequency analysis of spiral inductors, used in microelectronics circuits, to optimize their configuration. Software developed, designed, and implemented by the authors for nano and micrometre spiral inductor high frequency analysis, named ABSIF, is presented in this paper. ABSIF determines the inductance, quality factor, and electrical parameters for square, hexagonal, octagonal, and circular spiral inductors and their configuration optimization for energy efficiency. ABSIF is a good tool for spiral inductor design optimization in high frequency applications and takes into account the imposed technological limits and/or the designers’ constraints. A set of spiral inductors are considered and analysed for high frequency values using ABSIF, and the results are presented in the paper. The validation of ABSIF was completed by comparing the results with those obtained using a similar commercial software, Sonnet LiteTM, which is dedicated to high frequency electromagnetic analysis.


2021 ◽  
Vol 92 (9) ◽  
pp. 094701
Author(s):  
Najeh Zeidi ◽  
Sinda Kaziz ◽  
Mohamed Hadj Said ◽  
Libor Rufer ◽  
Andrea Cavallini ◽  
...  

Author(s):  
Yang Liu ◽  
Xiaoxian Liu ◽  
Qijun Lu ◽  
Tao Zhang ◽  
Xiangkun Yin

Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 30
Author(s):  
Issa Sabiri ◽  
Hamid Bouyghf ◽  
Abdelhadi Raihani

Energy recovery methods are currently receiving a very great deal of attention from the research community. Especially, in the case of implantable biosensors where wireless energy transfer has become the main technique in these applications. An implant is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure. Biosensors are man-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. The method of energy transfer eliminates the risk of skin infection, as well as the need for invasive surgery to change the battery. In this paper, we present the efficient approach to design an optimized octagonal spiral inductor operating at a frequency of 2.4 GHz with an inductance L value of 4 nH and a maximum factor of quality Q. The principle part of this work is based on the use of a collection of methods called metaheuristics, which are approaches used to solve a wide range of optimization problems, in order to achieve a high-performance optimized design. The problem is represented by an objective function that will be implemented using a MATLAB script and then the validation of the results obtained will be performed using the advanced design system (ADS) microwave circuit simulation software.


Author(s):  
Soufiane Abi ◽  
Hamid Bouyghf ◽  
Benhala Bachir ◽  
Abdelhadi Raihani

<p>In this paper, the optimal sizing of CMOS RF square spiral integrated inductor utilizing three meta-heuristic techniques namely Ant Colony Optimization, Artificial Bee Colony and Differential Evolution is presented. The π-model is employed for the characterization of inductor behavior. In this optimization procedure, the geometrical parameters of the CMOS RF square spiral integrated inductor are considered as the design variables that satisfy the most important constraints such as the fixed value of required inductance 4nH at the operating frequency 2.4 GHz. The design of the integrated square spiral inductor is done with UMC 130 nm CMOS technology. A comparison between the used meta-heuristic techniques is emphasized. The optimization results are checked and validated by the mean of the Momentum Advanced Design System (ADS).</p>


2020 ◽  
Vol 10 (18) ◽  
pp. 6366
Author(s):  
Soyeong Lee ◽  
Jonghyup Lee ◽  
Seongro Choi ◽  
Yong-Hyeok Lee ◽  
Jae-Young Chung ◽  
...  

In this paper, we propose an electrically small antenna consisting of a composite right/left-handed (CRLH) transmission line (TL) and a non-Foster matching circuit. An interdigital capacitor (IDC) and spiral inductor are used to fabricate the very high frequency (VHF) band antenna based on CRLH TL. The size of the proposed antenna is as small as 0.025 × 0.014 × 0.0008 λ at 145.5 MHz using the zeroth-order resonant generated by the CRLH TL. The antenna operation bandwidth is extended by the non-Foster circuit (NFC) consisting of a pair of transistors in a cross-coupled manner. An antenna prototype is fabricated and the input impedance, the received power, and gain of the proposed antenna are measured. The results show that the broadband characteristic is maintained while the form factor is extremely small compared to the wavelength. The average received power enhancement and increased bandwidth of antenna are 17.3 dB and 335.5 MHz (from 249.2–268.2 to 145.5–500 MHz), respectively. The calculated gain of the proposed antenna with the non-Foster is about −45 dBi at 155 MHz. The proposed antenna can be considered as a potential candidate of a low-profile antenna for military ground communications at the VHF band.


Sign in / Sign up

Export Citation Format

Share Document