Comparison of Static Var Compensator (SVC) and Unified Power Flow Controller (UPFC) for Static Voltage Stability Based on Sensitivity Analysis : A Case Study of 500 KV Java-Bali Electrical Power System

Author(s):  
Chico Hermanu ◽  
Oktavian Listiyanto ◽  
Agus Ramelan

Now days’ electrical power requirement has enlarged expanding as expansion & restructuring of electrical power system (PS) for generation & transmission in power sector is critically limited due to current resources & environmental circumstances. As outcome, approximately of corridors of power transmission overhead lines are greatly loaded & congested. Also major issue of power system voltage stability becomes power transfer restricted and capability issue. A Modern power electronics technology FATCS considered device Static Synchronous Series Compensator (SSSC) is VSC demanded series FACTS equipment. Unified power flow controller (UPFC) is to manage power flow (PF), voltage magnitude & phase angle. In this research paper suggested to maintain voltage magnitude as well as PF of faulty lines. The consequence of mutation of PS parameters like voltage, phase angle, active power, reactive power, & overall power factor with & without SSSC & UPFC have also incorporated. Assessment of PS safety is essential in society to expand customs to sustain system functions when one or more components fail. A PS is "secure" when it can defy loss of one or more ingredients & still go on working without major problems. The Contingency event investigation technique is taken to identify electrical node PF in faulty transmission lines (TL). The Performance of PS has been tested on IEEE 14-Bus System.


2018 ◽  
Vol 7 (3) ◽  
pp. 1656 ◽  
Author(s):  
Nabil A. Hussein ◽  
Ayamn A. Eisa ◽  
Hassan M. Mahmoud ◽  
Safy A. Shehata ◽  
El-Saeed A. Othman

Flexible AC Transmission Systems (FACTS) have been proposed in the late 1980s to meet and provide the electrical power system requirements. FACTS are used to control the power flow and to improve the power system stability. Interline power flow controller (IPFC) is a versatile device in the FACTS family of controllers and one of its latest generations which has the ability to simultaneously control the power flow in two or multiple transmission lines. This paper is tackling the IPFC performance in power systems; it aims to discuss the availability to define a known scenario for the IPFC performance in different systems. An introduction supported with brief review on IPFC, IPFC principle of operation and IPFC mathematical model are also introduced. IEEE 14-bus and 30-bus systems have chosen as a test power systems to support the behavior study of power system equipped with IPFC device. Three different locations have chosen to give variety of system configurations to give effective performance analysis.  


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


Sign in / Sign up

Export Citation Format

Share Document