A modified genetic algorithm for precedence constrained operation sequencing problem in process planning

Author(s):  
Yuliang Su ◽  
Xuening Chu ◽  
Dongping Chen ◽  
Dexin Chu
2013 ◽  
Vol 655-657 ◽  
pp. 1675-1681
Author(s):  
Shu Xu ◽  
Fu Ming Li

On the base of summarizing and contrasting the objectives of sequencing problem in mixed model assembly lines (MMAL) , and in consideration of the influence sequence-dependent setup times , a objective is proposed to minimize the total unfinished works and idle times over all jobs and stations . And the corresponding model is presented. To solve this model, a modified genetic algorithm is proposed to determine suitable sequences. Comparing with the Lingo 9 software, the proposed GA turns out to have a good ability to solve the sequencing problems.


2013 ◽  
Vol 423-426 ◽  
pp. 2184-2189
Author(s):  
Can Tao Shi ◽  
Qi You Liu ◽  
Yu Zhuo Liu

For optimization of manufacturing process planning problem in flexible manufacture system, a mathematical model is established with objective of minimizing total processing time. The genetic algorithm is applied to solve it with modifications: a segmented chromosome coding is adopted to represent the entire solution space; crossover operator and mutation operator are re-defined to make genetic algorithm suitable for the problem; a constraint adjustment algorithm is designed for the constrained operation sequencing optimization problem. The experimental result indicates that the proposed model and algorithm are feasible and effective.


2021 ◽  
Vol 11 (5) ◽  
pp. 1981
Author(s):  
Mica Djurdjev ◽  
Robert Cep ◽  
Dejan Lukic ◽  
Aco Antic ◽  
Branislav Popovic ◽  
...  

Computer-aided process planning represents the main link between computer-aided design and computer-aided manufacturing. One of the crucial tasks in computer-aided process planning is an operation sequencing problem. In order to find the optimal process plan, operation sequencing problem is formulated as an NP hard combinatorial problem. To solve this problem, a novel genetic crow search approach (GCSA) is proposed in this paper. The traditional CSA is improved by employing genetic strategies such as tournament selection, three-string crossover, shift and resource mutation. Moreover, adaptive crossover and mutation probability coefficients were introduced to improve local and global search abilities of the GCSA. Operation precedence graph is adopted to represent precedence relationships among features and vector representation is used to manipulate the data in the Matlab environment. A new nearest mechanism strategy is added to ensure that elements of machines, tools and tool approach direction (TAD) vectors are integer values. Repair strategy to handle precedence constraints is adopted after initialization and shift mutation steps. Minimization of total production cost is used as the optimization criterion to evaluate process plans. To verify the performance of the GCSA, two case studies with different dimensions are carried out and comparisons with traditional and some modern algorithms from the literature are discussed. The results show that the GCSA performs well for operation sequencing problem in computer-aided process planning.


1996 ◽  
Vol 104 (7) ◽  
pp. 2684-2691 ◽  
Author(s):  
Susan K. Gregurick ◽  
Millard H. Alexander ◽  
Bernd Hartke

Sign in / Sign up

Export Citation Format

Share Document