SMART/sup Wheeler/, a clinical workstation interface for the analysis of wheelchair propulsion

Author(s):  
G.J. Ensminger ◽  
R.A. Cooper ◽  
R.N. Robertson
1995 ◽  
Vol 34 (03) ◽  
pp. 289-296 ◽  
Author(s):  
B. H. Sielaff ◽  
D. P. Connelly ◽  
K. E. Willard

Abstract:The development of an innovative clinical decision-support project such as the University of Minnesota’s Clinical Workstation initiative mandates the use of modern client-server network architectures. Preexisting conventional laboratory information systems (LIS) cannot be quickly replaced with client-server equivalents because of the cost and relative unavailability of such systems. Thus, embedding strategies that effectively integrate legacy information systems are needed. Our strategy led to the adoption of a multi-layered connection architecture that provides a data feed from our existing LIS to a new network-based relational database management system. By careful design, we maximize the use of open standards in our layered connection structure to provide data, requisition, or event messaging in several formats. Each layer is optimized to provide needed services to existing hospital clients and is well positioned to support future hospital network clients.


1998 ◽  
Vol 37 (01) ◽  
pp. 16-25 ◽  
Author(s):  
P. Ringleb ◽  
T. Steiner ◽  
P. Knaup ◽  
W. Hacke ◽  
R. Haux ◽  
...  

Abstract:Today, the demand for medical decision support to improve the quality of patient care and to reduce costs in health services is generally recognized. Nevertheless, decision support is not yet established in daily routine within hospital information systems which often show a heterogeneous architecture but offer possibilities of interoperability. Currently, the integration of decision support functions into clinical workstations is the most promising way. Therefore, we first discuss aspects of integrating decision support into clinical workstations including clinical needs, integration of database and knowledge base, knowledge sharing and reuse and the role of standardized terminology. In addition, we draw up functional requirements to support the physician dealing with patient care, medical research and administrative tasks. As a consequence, we propose a general architecture of an integrated knowledge-based clinical workstation. Based on an example application we discuss our experiences concerning clinical applicability and relevance. We show that, although our approach promotes the integration of decision support into hospital information systems, the success of decision support depends above all on an adequate transformation of clinical needs.


Author(s):  
Yu-Sheng Yang ◽  
Alicia M. Koontz ◽  
Yu-Hsuan Hsiao ◽  
Cheng-Tang Pan ◽  
Jyh-Jong Chang

Maneuvering a wheelchair is an important necessity for the everyday life and social activities of people with a range of physical disabilities. However, in real life, wheelchair users face several common challenges: articulate steering, spatial relationships, and negotiating obstacles. Therefore, our research group has developed a head-mounted display (HMD)-based intuitive virtual reality (VR) stimulator for wheelchair propulsion. The aim of this study was to investigate the feasibility and efficacy of this VR stimulator for wheelchair propulsion performance. Twenty manual wheelchair users (16 men and 4 women) with spinal cord injuries ranging from T8 to L2 participated in this study. The differences in wheelchair propulsion kinematics between immersive and non-immersive VR environments were assessed using a 3D motion analysis system. Subjective data of the HMD-based intuitive VR stimulator were collected with a Presence Questionnaire and individual semi-structured interview at the end of the trial. Results indicated that propulsion performance was very similar in terms of start angle (p = 0.34), end angle (p = 0.46), stroke angle (p = 0.76), and shoulder movement (p = 0.66) between immersive and non-immersive VR environments. In the VR episode featuring an uphill journey, an increase in propulsion speed (p < 0.01) and cadence (p < 0.01) were found, as well as a greater trunk forward inclination (p = 0.01). Qualitative interviews showed that this VR simulator made an attractive, novel impression and therefore demonstrated the potential as a tool for stimulating training motivation. This HMD-based intuitive VR stimulator can be an effective resource to enhance wheelchair maneuverability experiences.


2008 ◽  
Vol 25 (5) ◽  
pp. 617-624 ◽  
Author(s):  
Linda O. Williams ◽  
Amy D. Anderson ◽  
Joyce Campbell ◽  
Lynn Thomas ◽  
Earl Feiwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document