energy cost of walking
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 2)

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4546
Author(s):  
Julia Primavesi ◽  
Aitor Fernández Menéndez ◽  
Didier Hans ◽  
Lucie Favre ◽  
Fabienne Crettaz von Roten ◽  
...  

Higher mass-normalized net energy cost of walking (NetCw/kg) and mechanical pendular recovery are observed in obese compared to lean adults. This study aimed to investigate the effect of different classes of obesity on the energetics and mechanics of walking and to explore the relationships between body mass, NetCw/kg and gait mechanics by using principal component analysis (PCA). NetCw/kg and gait mechanics were computed in severely obese (SOG; n = 18, BMI = 40.1 ± 4.4 kg·m−2), moderately obese (MOG; n = 17, BMI = 32.2 ± 1.5 kg·m−2) and normal-weight (NWG; n = 13, BMI = 22.0 ± 1.5 kg·m−2) adults during five walking trials (0.56, 0.83, 1.11, 1.39, 1.67 m·s−1) on an instrumented treadmill. NetCw/kg was significantly higher in SOG compared to NWG (p = 0.019), with no significant difference between SOG and MOG (p = 0.14), nor between MOG and NWG (p = 0.27). Recovery was significantly higher in SOG than in NWG (p = 0.028), with no significant difference between SOG and MOG (p = 0.13), nor between MOG and NWG (p = 0.35). PCA models explained between 17.0% and 44.2% of the data variance. This study showed that: (1) obesity class influences the gait energetics and mechanics; (2) PCA was able to identify two components, showing that the obesity class is associated with lower walking efficiency and better pendulum-like characteristics.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Tobias Goihl ◽  
Espen Alexander F. Ihlen ◽  
Ellen Marie Bardal ◽  
Karin Roeleveld ◽  
Astrid Ustad ◽  
...  

Author(s):  
Pamela M Dunlap ◽  
Andrea L Rosso ◽  
Xiaonan Zhu ◽  
Brooke N Klatt ◽  
Jennifer S Brach

Abstract Background It is important to understand the factors associated with life space mobility so that mobility disability can be prevented/treated. The purpose of this study was to identify the association between mobility determinants and life space among older adults. Methods This study was a cross-sectional analysis of 249 community-dwelling older adults (mean age=77.4 years, 65.5% female, 88% white) who were recruited for a randomized, controlled, clinical intervention trial. Associations between cognitive, physical, psychosocial, financial, and environmental mobility determinants and the Life Space Assessment (LSA) at baseline were determined using Spearman’s correlation coefficients and one-way analysis of variance. Multivariate analysis was performed using multivariable linear regression models. Results The mean LSA score for the sample was 75.3 (SD=17.8). Personal factors (age, gender, education, comorbidities), cognitive (Trail Making Test A and B), physical (gait speed, lower extremity power, Six Minute Walk Test, Figure of 8 Walk Test, tandem stance, energy cost of walking, and Late Life Function and Disability Function Scale), psychosocial (Modified Gait Efficacy Scale), and financial (neighborhood socio-economic status) domains of mobility were significantly associated with LSA score. In the final regression model, age (β=-0.43), lower extremity power (β=0.03), gait efficacy (β=0.19), and energy cost of walking (β=-57.41) were associated with life space (R 2=0.238). Conclusions Younger age, greater lower extremity power, more confidence in walking, and lower energy cost of walking were associated with greater life space. Clinicians treating individuals with mobility disability should consider personal, physical, and psychosocial factors assessing barriers to life space mobility.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Monira Aldhahi ◽  
Shipra Puri ◽  
Vivek Jain ◽  
Jeffrey E. Herrick

Abstract Background Autonomic dysregulation associated with obstructive sleep apnea (OSA) may limit cardiopulmonary responses to exercise, which, in turn, may impair functional aerobic capacity (FAC) and walking economy. We aimed to characterize walking economy and FAC in OSA patients compared with healthy adults (non-OSA) and examine their relationship with OSA severity (apnea-hypopnea index [AHI]). Methods A total of 26 adults (OSA, n = 13; non-OSA, n = 13) participated in this cross-sectional study. In this study, the participants with OSA were between the ages of 25 and 60 years, with a body mass index of 25 kg/m2 to 39 kg/m2, and who had undergone a recent third-party sleep study with an AHI of 5 or greater. Participants completed a maximal integrated cardiopulmonary exercise test, three separate exercise bouts of constant work rate (CWR) treadmill test at 85% of anaerobic threshold (AT), and a 10-min walk test (10MWT). Multiple linear regression analysis corrected for weight, age, and BMI were performed to examine the associations. Results There were significant differences between OSA and non-OSA participants in VO2peak (29.7 ± 5.6 mL/kg/min vs. 37.5 ± 6.5 mL/kg/min, p = 0.03) and Net VO2 during CWR (12.7 ± 5 vs.19 ± 6 mL/kg/min, p = 0.02). The 10MWT speed and distance were significantly lower in the OSA group (all p < 0.001). The energy cost of walking during submaximal exercise and 10-min walk test was higher among patients with OSA (all p < 0.001). The AHI scores were associated with 10MWT distance (R2 = 0.85, p < 0.001), energy cost of walking (R2 = 87, p < 0.001), and VO2 at anaerobic threshold (R2 = 0.92, p < 0.001). Conclusions The findings of this study show that patients with OSA have reduced FAC and a higher energy cost of walking. AHI explained 87% of variance in the energy cost of walking during the 10MWT. The results suggest that individuals with more severe obstructive sleep apnea experience greater impairment in functional performance.


2021 ◽  
Vol 11 (6) ◽  
pp. 2851
Author(s):  
Fausto Antonio Panizzolo ◽  
Eugenio Annese ◽  
Antonio Paoli ◽  
Giuseppe Marcolin

Difficulty walking in older adults affects their independence and ability to execute daily tasks in an autonomous way, which can result in a negative effect to their health status and risk of morbidity. Very often, reduced walking speed in older adults is caused by an elevated metabolic energy cost. Passive exoskeletons have been shown to offer a promising solution for lowering the energy cost of walking, and their simplicity could favor their use in real world settings. The goal of this study was to assess if a constant and consistent low torque applied by means of a passive exoskeleton to the hip flexors during walking could provide higher and more consistent metabolic cost reduction than previously achieved. Eight older adults walked on a treadmill at a constant speed of 1.1 m/s with and without the hip assistive device. Metabolic power and spatiotemporal parameters were measured during walking in these two conditions of testing. The hip assistive device was able to apply a low torque which initiates its assistive effect at mid-stance. This reduced the metabolic cost of walking across all the participants with respect to free walking (−4.2 ± 1.9%; p = 0.002). There were no differences in the spatiotemporal parameters reported. This study strengthened the evidence that passive assistive devices can be a valuable tool to reduce metabolic cost of walking in older adults. These findings highlighted the importance of investigating torque profiles to improve the performance provided by a hip assistive device. The simplicity and usability of a system of this kind can make it a suitable candidate for improving older adults’ independence.


Sign in / Sign up

Export Citation Format

Share Document