Noise added to mechanical ventilation improves gas exchange in acute lung injury

Author(s):  
S. Arold ◽  
M. Groark ◽  
R. Hohman ◽  
R. Mora ◽  
E.P. Ingenito ◽  
...  
2016 ◽  
Vol 16 (3) ◽  
pp. 5-13
Author(s):  
D Mokra ◽  
P Mikolka ◽  
P Kosutova ◽  
M Kolomaznik ◽  
M Jurcek ◽  
...  

AbstractSevere meconium aspiration syndrome (MAS) in the neonates often requires a ventilatory support. As a method of choice, a conventional mechanical ventilation with small tidal volumes (VT<6 ml/kg) and appropriate ventilatory pressures is used. The purpose of this study was to assess the short-term effects of the small-volume CMV performed by two neonatal ventilators: Aura V (Chirana Stara Tura a.s., Slovakia) and SLE5000 (SLE Ltd., UK) on the lung functions of rabbits with experimentally-induced MAS and to estimate whether the newly developed neonatal version of the ventilator Aura V is suitable for ventilation of the animals with MAS.In the young rabbits, a model of MAS was induced by an intratracheal instillation of a suspension of neonatal meconium (4 ml/kg, 25 mg/ml). After creating the model of MAS, the animals were ventilated with small-volume CMV (frequency 50/min, VT<6 ml/kg, inspiration time 50 %, fraction of inspired oxygen 1.0, positive end-expiratory pressure 0.5 kPa, mean airway pressure 1.1 kPa) performed by ventilator Aura V (Aura group, n=7) or ventilator SLE5000 (SLE group, n=7) for additional 4 hours. One group of animals served as healthy non-ventilated controls (n=6). Blood gases, oxygenation indexes, ventilatory pressures, lung compliance, oxygen saturation and total and differential white blood cell (WBC) count were regularly determined. After euthanizing the animals, a left lung was saline-lavaged and total and differential counts of cells in the bronchoalveolar lavage (BAL) fluid were determined. A right lung was used for estimation of lung edema formation (expressed as a wet/dry weight ratio) and for analysis of concentrations of pro-inflammatory cytokines (IL-1β, IL-8, TNF). The cytokines were measured also in the blood plasma taken at the end of experiment.Meconium instillation seriously worsened the gas exchange and induced inflammation and lung edema formation. In the Aura group, slightly lower concentrations of cytokines were found and better gas exchange early after creating the MAS model was observed. However, there were no significant differences in the respiratory parameters between the ventilated groups at the end of experiment (P>0.05).Concluding, the newly developed neonatal version of the ventilator Aura V was found to be fully comparable to widely used neonatal ventilator SLE5000. Results provided by Aura V in CMV ventilation of rabbits with meconium-induced acute lung injury suggest its great potential also for future clinical use, i.e. for ventilation of the neonates with MAS.


2003 ◽  
Vol 94 (3) ◽  
pp. 975-982 ◽  
Author(s):  
Timothy C. Bailey ◽  
Erica L. Martin ◽  
Lin Zhao ◽  
Ruud A. W. Veldhuizen

Mechanical ventilation is a necessary intervention for patients with acute lung injury. However, mechanical ventilation can propagate acute lung injury and increase systemic inflammation. The exposure to >21% oxygen is often associated with mechanical ventilation yet has not been examined within the context of lung stretch. We hypothesized that mice exposed to >90% oxygen will be more susceptible to the deleterious effects of high stretch mechanical ventilation. C57B1/6 mice were randomized into 48-h exposure of 21 or >90% oxygen; mice were then killed, and isolated lungs were randomized into a nonstretch or an ex vivo, high-stretch mechanical ventilation group. Lungs were assessed for compliance and lavaged for surfactant analysis, and cytokine measurements or lungs were homogenized for surfactant-associated protein analysis. Mice exposed to >90% oxygen + stretch had significantly lower compliance, altered pulmonary surfactant, and increased inflammatory cytokines compared with all other groups. Our conclusion is that 48 h of >90% oxygen and high-stretch mechanical ventilation deleteriously affect lung function to a greater degree than stretch alone.


2004 ◽  
Vol 287 (4) ◽  
pp. L867-L878 ◽  
Author(s):  
Kai Heckel ◽  
Rainer Kiefmann ◽  
Martina Dörger ◽  
Mechthild Stoeckelhuber ◽  
Alwin E. Goetz

Permeability of the endothelial barrier to large molecules plays a pivotal role in the manifestation of early acute lung injury. We present a novel and sensitive technique that brings microanatomical visualization and quantification of microvascular permeability in line. White New Zealand rabbits were anesthetized and ventilated mechanically. Rabbit serum albumin (RSA) was labeled with colloidal gold particles. We quantified macromolecular leakage of gold-labeled RSA and thickening of the gas exchange distance by electron microscopy, taking into account morphology of microvessels. The control group receiving a saline solution represented a normal gas exchange barrier without extravasation of gold-labeled albumin. Infusion of lipopolysaccharide (LPS) resulted in a significant displacement of gold-labeled albumin into pulmonary cells, the lung interstitium, and even the alveolar space. Correspondingly, intravital fluorescence microscopy and digital image analysis indicated thickening of width of alveolar septa. The findings were accompanied by a deterioration of alveolo-arterial oxygen difference, whereas wet/dry ratio and albumin concentration in the bronchoalveolar lavage fluid failed to detect that early stage of pulmonary edema. Inhibition of the nuclear enzyme poly(ADP-ribose) synthetase by 3-aminobenzamide prevented LPS-induced microvascular injury. To summarize: colloidal gold particles visualized by standard electron microscopy are a new and very sensitive in vivo marker of microvascular permeability in early acute lung injury. This technique enabling detailed microanatomical and quantitative pathophysiological characterization of edema formation can form the basis for evaluating novel treatment strategies against acute lung injury.


Author(s):  
Iris Duroi ◽  
Frederik Van Durme ◽  
Tony Bruyns ◽  
Sofie Louage ◽  
Alex Heyse

Severe COVID-19 may predispose to both venous and arterial thrombosis. We describe a patient with acute ischaemic stroke while suffering from COVID-19 and respiratory failure, necessitating mechanical ventilation. Deep sedation may delay diagnosis.


2020 ◽  
Author(s):  
Lunyang Hu ◽  
Baoli Wang ◽  
Yong Jiang ◽  
Banghui Zhu ◽  
Chen Wang ◽  
...  

Abstract Background: Until now, transfusion-related acute lung injury (TRALI) has been considered to be the leading cause of blood transfusion-related diseases and death. And there is no clinically effective treatment plan for TRALI. The aim of this study was to systematically summarize the literature on risk factors for TRALI in critical patients. Methods: Electronic searches (up to March 2020) were performed in the Cochrane Library, Web of Knowledge, Embase, and PubMed databases. We included studies reporting on the risk factors of TRALI for critical patients and extracted the risk factors. Finally, third studies met the inclusion criteria. Results: We summarized and analyzed the potential risk factors of TRALI for critical patients in 13 existing studies. The host-related factors were age (odds ratio (OR) [95% confidence interval] = 1.16 [1.08-1.24]), sex (OR = 1.26 [1.16-1.38]), tobacco use status (OR = 3.82 [1.91-7.65]), chronic alcohol abuse (OR = 3.82 [2.97-26.83]), fluid balance (OR = 1.24 [1.08-1.42]), shock before transfusion (OR = 4.41 [2.38-8.20]), and ASA score of the recipients (OR = 2.72 [1.43-5.16]). The transfusion-related factors were the number of transfusions (OR = 1.40 [1.14-1.72]) and fresh frozen plasma (FFP) units (OR = 1.21 [1.01-1.46]). The device-related factor was mechanical ventilation (OR = 4.13 [2.20-7.76]). Conclusions: The risk factors for TRALI in this study included age, sex, tobacco use, chronic alcohol abuse, fluid balance, shock before transfusion, ASA score, number of transfusions, FFP units and mechanical ventilation. Our study suggests that host-related risk factors play a more important role in the occurrence and development of TRALI than blood transfusion-related risk factors.


Author(s):  
Ricard Ferrer ◽  
Antoni Artigas ◽  
Mitchell Levy ◽  
Maria Luisa Martinez ◽  
Candelaria de Haro ◽  
...  

2006 ◽  
Vol 105 (4) ◽  
pp. 703-708 ◽  
Author(s):  
Eumorfia Kondili ◽  
Nectaria Xirouchaki ◽  
Katerina Vaporidi ◽  
Maria Klimathianaki ◽  
Dimitris Georgopoulos

Background Recent data indicate that assisted modes of mechanical ventilation improve pulmonary gas exchange in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Proportional assist ventilation (PAV) is a new mode of support that amplifies the ventilatory output of the patient effort and improves patient-ventilator synchrony. It is not known whether this mode may be used in patients with ALI/ARDS. The aim of this study was to compare the effects of PAV and pressure-support ventilation on breathing pattern, hemodynamics, and gas exchange in a homogenous group of patients with ALI/ARDS due to sepsis. Methods Twelve mechanically ventilated patients with ALI/ARDS (mean ratio of partial pressure of arterial oxygen to fractional concentration of oxygen 190 +/- 49 mmHg) were prospectively studied. Patients received pressure-support ventilation and PAV in random order for 30 min while maintaining mean airway pressure constant. With both modes, the level of applied positive end-expiratory pressure (7.1 +/- 2.1 cm H2O) was kept unchanged throughout. At the end of each study period, cardiorespiratory data were obtained, and dead space to tidal volume ratio was measured. Results With both modes, none of the patients exhibited clinical signs of distress. With PAV, breathing frequency and cardiac index were slightly but significantly higher than the corresponding values with pressure-support ventilation (24.5 +/- 6.9 vs. 21.4 +/- 6.9 breaths/min and 4.4 +/- 1.6 vs. 4.1 +/- 1.3 l . min . m, respectively). None of the other parameters differ significantly between modes. Conclusions In patients with ALI/ARDS due to sepsis, PAV and pressure-support ventilation both have clinically comparable short-term effects on gas exchange and hemodynamics.


Sign in / Sign up

Export Citation Format

Share Document