protective mechanical ventilation
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 39)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mathieu Blot ◽  
Marine Jacquier ◽  
Laure-Anne Pauchard ◽  
Chloé Rebaud ◽  
Charline Marlin ◽  
...  

Background Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. Methods Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord–derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. Results High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/μl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/μl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. Conclusions In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2021 ◽  
Vol 12 ◽  
Author(s):  
Clément Brault ◽  
Yoann Zerbib ◽  
Loay Kontar ◽  
Julien Maizel ◽  
Michel Slama

Introduction: The effect of positive end-expiratory pressure (PEEP) depends closely on the potential for lung recruitment. Bedside assessment of lung recruitability is crucial for personalized lung-protective mechanical ventilation in acute respiratory distress syndrome (ARDS) patients.Methods: We developed a transoesophageal lung ultrasound (TE-LUS) method in which a quantitative (computer-assisted) grayscale determination served as a guide to PEEP-induced lung recruitment. The method is based on the following hypothesis: when the PEEP increases, inflation of the recruited alveoli leads to significant changes in the air/water ratio. Normally ventilated areas are hypoechoic because the ultrasound waves are weakly reflected while poorly aerated areas or non-aerated areas are hyperechoic. We calculated the TE-LUS re-aeration score (RAS) as the ratio of the mean gray scale level at low PEEP to that value at high PEEP for the lower and upper lobes. A RAS > 1 indicated an increase in ventilated area. We used this new method to detect changes in ventilation in patients with a low (<0.5) vs. high (≥0.5) recruitment-to-inflation (R/I) ratio (i.e., the ratio between the recruited lung compliance and the respiratory system compliance at low PEEP).Results: We included 30 patients with moderate-to-severe ARDS. In patients with a high R/I ratio, the TE-LUS RAS was significantly higher in the lower lobes than in the upper lobes (1.20 [1.12–1.63] vs. 1.05 [0.89–1.38]; p = 0.05). Likewise, the TE-LUS RAS in the lower lobes was significantly higher in the high R/I group than in the low R/I group (1.20 [1.12–1.63] vs. 1.07 [1.00–1.20]; p = 0.04).Conclusion: The increase in PEEP induces a substantial gain in the ventilation detected by TE-LUS of poorly or non-aerated lower lobes (dependent lung regions), especially in patients with a high R/I ratio.


Author(s):  
Vesna Marjanovic ◽  
Ivana Budic ◽  
Mladjan Golubovic ◽  
Christian Breschan

AbstractObesity is one of the most common clinical conditions in the pediatric population with an increasing prevalence ranging from 20 to 30% worldwide. It is well known that during ambulatory anesthesia, obese children are more prone to develop perioperative respiratory adverse events (PRAEs) associated with obesity. To avoid or at least minimize these adverse effects, a thorough preoperative assessment should be undertaken as well as consideration of specific anesthetic approaches such as preoxygenation before induction of anesthesia and optimizing drug dosing. The use of short-acting opioid and nonopioid analgesics and the frequent implementation of regional anesthesia should also be included. Noninvasive airway management, protective mechanical ventilation, and complete reversion of neuromuscular blockade and awake extubation also proved to be beneficial in preventing PRAEs. During the postoperative period, continuous monitoring of oxygenation and ventilation is mandatory in obese children. In the current review, we sought to provide recommendations that might help to reduce the severity of perioperative respiratory adverse events in obese children, which could be of particular importance for reducing the rate of unplanned hospitalizations and ultimately improving the overall postoperative recovery.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Trung Kien Nguyen ◽  
Viet Luong Nguyen ◽  
Truong Giang Nguyen ◽  
Duc Hanh Mai ◽  
Ngoc Quynh Nguyen ◽  
...  

Abstract Background Pneumoperitoneum and Trendelenburg position in laparoscopic surgeries could contribute to postoperative pulmonary dysfunction. In recent years, intraoperative lung-protective mechanical ventilation (LPV) has been reportedly able to attenuate ventilator-induced lung injuries (VILI). Our objectives were to test the hypothesis that LPV could improve intraoperative oxygenation function, pulmonary mechanics and early postoperative atelectasis in laparoscopic surgeries. Methods In this randomized controlled clinical trial, 62 patients indicated for elective abdominal laparoscopic surgeries with an expected duration of greater than 2 h were randomly assigned to receive either lung-protective ventilation (LPV) with a tidal volume (Vt) of 7 ml kg− 1 ideal body weight (IBW), 10 cmH2O positive end-expiratory pressure (PEEP) combined with regular recruitment maneuvers (RMs) or conventional ventilation (CV) with a Vt of 10 ml kg− 1 IBW, 0 cmH2O in PEEP and no RMs. The primary endpoints were the changes in the ratio of PaO2 to FiO2 (P/F). The secondary endpoints were the differences between the two groups in PaO2, alveolar-arterial oxygen gradient (A-aO2), intraoperative pulmonary mechanics and the incidence of atelectasis detected on chest x-ray on the first postoperative day. Results In comparison to CV group, the intraoperative P/F and PaO2 in LPV group were significantly higher while the intraoperative A-aO2 was clearly lower. Cdyn and Cstat at all the intraoperative time points in LPV group were significantly higher compared to CV group (p < 0.05). There were no differences in the incidence of atelectasis on day one after surgery between the two groups. Conclusions Lung protective mechanical ventilation significantly improved intraoperative pulmonary oxygenation function and pulmonary compliance in patients experiencing various abdominal laparoscopic surgeries, but it could not ameliorate early postoperative atelectasis and oxygenation function on the first day after surgery. Trial registration https://www.clinicaltrials.gov/identifier: NCT04546932 (09/05/2020).


Author(s):  
Diana Ávila Reyes ◽  
Bayron David García P. ◽  
Guillermo Salazar Gutierrez ◽  
José Fernando Gómez González ◽  
David Ricardo Echeverry Piedrahita ◽  
...  

COVID-19-associated infection leads to a pathology of yet unknown clinical behavior, confronting the clinician with various challenges. An extensive search was conducted based on review articles on SARS-CoV-2 infection and studies including mechanical ventilation management strategies in order to complete this narrative review. Evidenced-based treatment for SARS-CoV2 infection is still in the works. We have some tools from our knowledge from past experiences indicating that a step-wise management approach should be used, without neglecting other joint therapeutic measures for improved clinical outcomes of a condition with a high mortality. The current recommendations indicate that patients with severe acute respiratory failure due to SARS-CoV-2 should be managed with protective mechanical ventilation measures. No strong evidence is yet available on the individualization of mechanical ventilation therapy according to phenotypes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thiago G. Bassi ◽  
Elizabeth C. Rohrs ◽  
Karl C. Fernandez ◽  
Marlena Ornowska ◽  
Michelle Nicholas ◽  
...  

AbstractMechanical ventilation is the cornerstone of the Intensive Care Unit. However, it has been associated with many negative consequences. Recently, ventilator-induced brain injury has been reported in rodents under injurious ventilation settings. Our group wanted to explore the extent of brain injury after 50 h of mechanical ventilation, sedation and physical immobility, quantifying hippocampal apoptosis and inflammation, in a normal-lung porcine study. After 50 h of lung-protective mechanical ventilation, sedation and immobility, greater levels of hippocampal apoptosis and neuroinflammation were clearly observed in the mechanically ventilated group, in comparison to a never-ventilated group. Markers in the serum for astrocyte damage and neuronal damage were also higher in the mechanically ventilated group. Therefore, our study demonstrated that considerable hippocampal insult can be observed after 50 h of lung-protective mechanical ventilation, sedation and physical immobility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luca Fardin ◽  
Ludovic Broche ◽  
Goran Lovric ◽  
Alberto Mittone ◽  
Olivier Stephanov ◽  
...  

AbstractMechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI was performed at 22.6 µm voxel size, under protective mechanical ventilation [tidal volume: 6 ml/kg; positive end-expiratory pressure (PEEP): 5 cmH2O]. Videos and quantitative maps of within-tidal R/D showed that injury propagated outwards from non-aerated regions towards adjacent regions where cyclic R/D was present. R/D of peripheral airspaces was both pressure and time-dependent, occurring throughout the respiratory cycle with significant scatter of opening/closing pressures. There was a significant association between R/D and regional lung cellular infiltration (p = 0.04) suggesting that tidal R/D of the lung parenchyma may contribute to regional lung inflammation or capillary-alveolar barrier dysfunction and to the progression of lung injury. PEEP may not fully mitigate this phenomenon even at high levels. Ventilation strategies utilizing the time-dependence of R/D may be helpful in reducing R/D and associated injury.


2021 ◽  
Vol 47 (1) ◽  
pp. e20200360-e20200360
Author(s):  
Cristiane Bastos-Netto ◽  
Maycon Moura Reboredo ◽  
Rodrigo Souza Vieira ◽  
Lídia Maria Carneiro da Fonseca ◽  
Erich Vidal Carvalho ◽  
...  

2020 ◽  
pp. 40-45
Author(s):  
Olha Filyk

The aim of the study was to determine whether diaphragm-protective mechanical ventilation can prevent diaphragm atrophy in children with respiratory failure. Materials and methods. We complete the prospective single-center cohort study. Data analysis included 82 patients 1 month - 18 years old, divided into I group (lung-protective MV) and II group (diaphragm-protective in addition to lung-protective MV). Patients were divided into age subgroups. Stages of the study: 1st day (d1), 3rd (d3), 5th (d5), 7th (d7), 9th (d9), 28th (d28). We studied changes in diaphragm thickness at the end of exhalation and compared them with these indicators at patient`s admission to the study (baseline). Primary endpoint was length of stay in ICU, secondary endpoints were complications (prolonged MV). Results are described as arithmetic mean (X) and standard deviation (σ) with level of significance p. Results. There were significant differences in length of stay in ICU among patients of the 1st and 5th age subgroups: in 1st age subgroup this data was in 1.3 times lower in II group, compared with I group (p <0,05); in 5th age subgroup the situation was the opposite - length of stay in ICU was in 1.4 times higher in II group, compared with I group (p<0.05). There were no patients who required lifelong mechanical ventilation in any of the groups. Changes in the thickness of the diaphragm, which indicate its atrophy, were the most significant among patients of the first, second, third and fourth age subgroups and the severity of atrophy was higher among patients of group I, compared with patients of group II. Conclusions. Diaphragm-protective mechanical ventilation significantly prevents diaphragm atrophy in children with respiratory failure in 2nd, 4th, and 5th age subgroups. Providing goal-directed diaphragm-protective MV might reduce the length of stay in ICU among patients of 1st and 5th age subgroups. There were no observed complications like lifelong mechanical ventilation in both patient`s group.


Sign in / Sign up

Export Citation Format

Share Document