Soil erosion estimation by dual-polarization radar remote sensing

Author(s):  
G.P. Kulemin
1997 ◽  
Author(s):  
Gennady P. Kulemin ◽  
Vladimir V. Lukin ◽  
Alexander A. Zelensky ◽  
Andrei A. Kurekin ◽  
Edwin T. Engman

2016 ◽  
Vol 19 (2) ◽  
pp. 113-121
Author(s):  
Phung Phi Hoang ◽  
Nguyen Dao Lam ◽  
Viet Bach Pham

Mangrove is one of the ecologically significant ecosystems in coastal areas, both on environment and biological resources. Radar remote sensing demonstrates a high potential in detecting, identifying, mapping and monitoring mangrove forests. Advantages of radar remote sensing are that almost unaffected by the weather phenomena in the atmosphere, e.g. clouds so that it can acquire images at day and night times. This study considers possibilities of ALOS PALSAR (L-band) and ENVISAT ASAR APP (C-band) for identifying mangrove forests. Results show that using single-date data of ENVISAT ASAR APP including dual polarization HH&HV are difficult to classify mangrove objects; whilst single-date data of ALOS PALSAR with dual polarization HH&HV have a better classification for tree density but at species level identification (e.g. Avicenna or Rhizophora) is more difficult. Results classified according to forest cover density data with overall accuracy of 81.91.


2013 ◽  
Vol 19 ◽  
pp. 912-921 ◽  
Author(s):  
M.Minwer Alkharabsheh ◽  
T.K. Alexandridis ◽  
G. Bilas ◽  
N. Misopolinos ◽  
N. Silleos

2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Abdellaali Tairi ◽  
Ahmed Elmouden ◽  
Lhoussaine Bouchaou ◽  
Mohamed Aboulouafa

2021 ◽  
Vol 205 ◽  
pp. 76-92
Author(s):  
Clara Simón de Blas ◽  
Rubén Valcarce-Diñeiro ◽  
Ana E. Sipols ◽  
Nilda Sánchez Martín ◽  
Benjamín Arias-Pérez ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jarbou A. Bahrawi ◽  
Mohamed Elhag ◽  
Amal Y. Aldhebiani ◽  
Hanaa K. Galal ◽  
Ahmad K. Hegazy ◽  
...  

Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS) and Geographic Information Systems (GIS) techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE) for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating theK-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha). GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.


Sign in / Sign up

Export Citation Format

Share Document