FCM and HCA performance analysis for crop type classification of SAR imagery

Author(s):  
M.T. San Martin ◽  
M. Sadki
Author(s):  
C.C. Wackerman ◽  
R.R. Jentz ◽  
R.A. Shuchman

2021 ◽  
Vol 13 (13) ◽  
pp. 2477
Author(s):  
Pattathal V. Arun ◽  
Arnon Karnieli

Classification of crops using time-series vegetation index (VI) curves requires appropriate modeling of phenological events and their characteristics. The current study explores the use of capsules, a group of neurons having an activation vector, to learn the characteristic features of the phenological curves. In addition, joint optimization of denoising and classification is adopted to improve the generalizability of the approach and to make it resilient to noise. The proposed approach employs reconstruction loss as a regularizer for classification, whereas the crop-type label is used as prior information for denoising. The activity vector of the class capsule is applied to sample the latent space conditioned on the cell state of a Long Short-Term Memory (LSTM) that integrates the sequences of the phenological events. Learning of significant phenological characteristics is facilitated by adversarial variational encoding in conjunction with constraints to regulate latent representations and embed label information. The proposed architecture, called the variational capsule network (VCapsNet), significantly improves the classification and denoising results. The performance of VCapsNet can be attributed to the suitable modeling of phenological events and the resilience to outliers and noise. The maxpooling-based capsule implementation yields better results, particularly with limited training samples, compared to the conventional implementations. In addition to the confusion matrix-based accuracy measures, this study illustrates the use of interpretability-based evaluation measures. Moreover, the proposed approach is less sensitive to noise and yields good results, even at shallower depths, compared to the main existing approaches. The performance of VCapsNet in accurately classifying wheat and barley crops indicates that the approach addresses the issues in crop-type classification. The approach is generic and effectively models the crop-specific phenological features and events. The interpretability-based evaluation measures further indicate that the approach successfully identifies the crop transitions, in addition to the planting, heading, and harvesting dates. Due to its effectiveness in crop-type classification, the proposed approach is applicable to acreage estimation and other applications in different scales.


2013 ◽  
Vol 51 (6) ◽  
pp. 3328-3335 ◽  
Author(s):  
Scott Havens ◽  
Hans-Peter Marshall ◽  
Christine Pielmeier ◽  
Kelly Elder

2019 ◽  
Author(s):  
Marion Poupard ◽  
Paul Best ◽  
Jan Schlüter ◽  
Helena Symonds ◽  
Paul Spong ◽  
...  

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km 2 of ocean. Since 2015 we are continuously streaming the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization, we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features describing the pitch contour. While preliminary, our results demonstrate a possible route towards automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca pods in the area according to the classification of their call types. A large-scale call type classification would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face of increasing anthropic pressure.


2020 ◽  
Vol 86 (7) ◽  
pp. 431-441 ◽  
Author(s):  
Sébastien Giordano ◽  
Simon Bailly ◽  
Loic Landrieu ◽  
Nesrine Chehata

Leveraging the recent availability of accurate, frequent, and multimodal (radar and optical) Sentinel-1 and -2 acquisitions, this paper investigates the automation of land parcel identi- fication system (LPIS ) crop type classification. Our approach allows for the automatic integration of temporal knowledge, i.e., crop rotations using existing parcel-based land cover databases and multi-modal Sentinel-1 and -2 time series. The temporal evolution of crop types was modeled with a linear- chain conditional random field, trained with time series of multi-modal (radar and optical) satellite acquisitions and associated LPIS. Our model was tested on two study areas in France (≥ 1250 km2) which show different crop types, various parcel sizes, and agricultural practices: . the Seine et Marne and the Alpes de Haute-Provence classified accordingly to a fine national 25-class nomenclature. We first trained a Random Forest classifier without temporal structure to achieve 89.0% overall accuracy in Seine et Marne (10 classes) and 73% in Alpes de Haute-Provence (14 classes). We then demonstrated experimentally that taking into account the temporal structure of crop rotation with our model resulted in an increase of 3% to +5% in accuracy. This increase was especially important (+12%) for classes which were poorly classified without using the temporal structure. A stark posi- tive impact was also demonstrated on permanent crops, while it was fairly limited or even detrimental for annual crops.


Sign in / Sign up

Export Citation Format

Share Document