Investigation of Atmospheric Gravity Waves and Rotors in the Marine Boundary Layer using Spaceborne Synthetic Aperture Radar Images

Author(s):  
Werner Alpers
2013 ◽  
Vol 70 (11) ◽  
pp. 3448-3459 ◽  
Author(s):  
Xiaofeng Li ◽  
Weizhong Zheng ◽  
Xiaofeng Yang ◽  
Jun A. Zhang ◽  
William G. Pichel ◽  
...  

Abstract Both atmospheric gravity waves (AGW) and marine atmospheric boundary layer (MABL) rolls are simultaneously observed on an Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) image acquired along the China coast on 22 May 2005. The synthetic aperture radar (SAR) image covers about 400 km × 400 km of a coastal area of the Yellow Sea. The sea surface imprints of AGW show the patterns of both a transverse wave along the coastal plain and a diverging wave in the lee of Mount Laoshan (1133-m peak), which indicate that terrain forcing affects the formation of AGW. The AGW have a wavelength of 8–10 km and extend about 100 km offshore. Model simulation shows that these waves have an amplitude over 3 km. Finer-scale (~2 km) brushlike roughness features perpendicular to the coast are also observed, and they are interpreted as MABL rolls. The FFT analysis shows that the roll wavelengths vary spatially. The two-way interactive, triply nested grid (9–3–1 km) Weather Research and Forecasting Model (WRF) simulation reproduces AGW-generated wind perturbations that are in phase at all levels, reaching up to the 700-hPa level for the diverging AGW and the 900-hPa level for the transverse AGW. The WRF simulation also reveals that dynamic instability, rather than thermodynamic instability, is the cause for the MABL roll generation. Differences in atmospheric inflection-point level and instability at different locations are reasons why the roll wavelengths vary spatially.


2012 ◽  
Vol 48 (3) ◽  
pp. 2426-2436 ◽  
Author(s):  
Thomas K. Sjogren ◽  
Viet T. Vu ◽  
Mats I. Pettersson ◽  
Anders Gustavsson ◽  
Lars M. H. Ulander

Sign in / Sign up

Export Citation Format

Share Document