Multi-Discriminator Generative Adversarial Network for High Resolution Gray-Scale Satellite Image Colorization

Author(s):  
Feimo Li ◽  
Lei Ma ◽  
Jian Cai
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 21604-21617
Author(s):  
Kangning Du ◽  
Changtong Liu ◽  
Lin Cao ◽  
Yanan Guo ◽  
Fan Zhang ◽  
...  

2020 ◽  
Vol 174 ◽  
pp. 123-127
Author(s):  
Jianxin Cheng ◽  
Jin Liu ◽  
Zhou Xu ◽  
Chenkai Shen ◽  
Qiuming Kuang

Author(s):  
F. Pineda ◽  
V. Ayma ◽  
C. Beltran

Abstract. High-resolution satellite images have always been in high demand due to the greater detail and precision they offer, as well as the wide scope of the fields in which they could be applied; however, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Recent models of convolutional neural networks (CNN) are very suitable for applications with image processing, like resolution enhancement of images; but in order to obtain an acceptable result, it is important, not only to define the kind of CNN architecture but the reference set of images to train the model. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a peruvian satellite, which serve as the reference for the super-resolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR) and the Structural Similarity (SSIM). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Linyan Li ◽  
Yu Sun ◽  
Fuyuan Hu ◽  
Tao Zhou ◽  
Xuefeng Xi ◽  
...  

In this paper, we propose an Attentional Concatenation Generative Adversarial Network (ACGAN) aiming at generating 1024 × 1024 high-resolution images. First, we propose a multilevel cascade structure, for text-to-image synthesis. During training progress, we gradually add new layers and, at the same time, use the results and word vectors from the previous layer as inputs to the next layer to generate high-resolution images with photo-realistic details. Second, the deep attentional multimodal similarity model is introduced into the network, and we match word vectors with images in a common semantic space to compute a fine-grained matching loss for training the generator. In this way, we can pay attention to the fine-grained information of the word level in the semantics. Finally, the measure of diversity is added to the discriminator, which enables the generator to obtain more diverse gradient directions and improve the diversity of generated samples. The experimental results show that the inception scores of the proposed model on the CUB and Oxford-102 datasets have reached 4.48 and 4.16, improved by 2.75% and 6.42% compared to Attentional Generative Adversarial Networks (AttenGAN). The ACGAN model has a better effect on text-generated images, and the resulting image is closer to the real image.


2021 ◽  
Author(s):  
Jiali Wang ◽  
Zhengchun Liu ◽  
Ian Foster ◽  
Won Chang ◽  
Rajkumar Kettimuthu ◽  
...  

Abstract. This study develops a neural network-based approach for emulating high-resolution modeled precipitation data with comparable statistical properties but at greatly reduced computational cost. The key idea is to use combination of low- and high- resolution simulations to train a neural network to map from the former to the latter. Specifically, we define two types of CNNs, one that stacks variables directly and one that encodes each variable before stacking, and we train each CNN type both with a conventional loss function, such as mean square error (MSE), and with a conditional generative adversarial network (CGAN), for a total of four CNN variants.We compare the four new CNN-derived high-resolution precipitation results with precipitation generated from original high resolution simulations, a bilinear interpolater and the state-of-the-art CNN-based super-resolution (SR) technique. Results show that the SR technique produces results similar to those of the bilinear interpolator with smoother spatial and temporal distributions and smaller data variabilities and extremes than the high resolution simulations. While the new CNNs trained by MSE generate better results over some regions than the interpolator and SR technique do, their predictions are still not as close as ground truth. The CNNs trained by CGAN generate more realistic and physically reasonable results, better capturing not only data variability in time and space but also extremes such as intense and long-lasting storms. The new proposed CNN-based downscaling approach can downscale precipitation from 50 km to 12 km in 14 min for 30 years once the network is trained (training takes 4 hours using 1 GPU), while the conventional dynamical downscaling would take 1 months using 600 CPU cores to generate simulations at the resolution of 12 km over contiguous United States.


Sign in / Sign up

Export Citation Format

Share Document