climate prediction
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 98)

H-INDEX

41
(FIVE YEARS 3)

Author(s):  
Caio A. S. Coelho ◽  
Jessica C. A. Baker ◽  
Dominick V. Spracklen ◽  
Paulo Y. Kubota ◽  
Dayana C. Souza ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yue Chen ◽  
Aihui Wang ◽  
Guolin Feng

Abstract Understanding the contributions of large-scale atmospheric circulation and local land surface processes to precipitation is essentially important for the climate prediction. This study adopts a dynamic adjustment (DA) approach based on constructed circulation analogs to quantitatively isolate the contribution of atmospheric circulation to summer land precipitation (Pr) over Asian mid-low latitudes during 1980-2019. The atmospheric circulation factor is represented by the 500 hPa geopotential height (Z500) from the fifth generation ECMWF reanalysis (ERA5), and the land surface factors, including soil moisture (SM) and net radiation and heat fluxes are from the products of the Global Land Data Assimilation System (GLDAS). The residual component after DA is regarded as the contribution from land surface processes via evaporation mainly resulting from SM. The results indicate that the key SM-Pr feedback areas are mainly located in northeast China and the northern Indian Peninsula. The key influencing area of Z500 on the land Pr anomaly shows a “-+-” tripole pattern in the mid-latitude region. Atmospheric circulation determines the magnitude of summer land Pr, while the residual components reflect the land-atmosphere coupling effect and dominate Pr trend. This conclusion is helpful for better understanding the evolution mechanism of summer climate over Asia mid-low latitudes and may also have application value for climate prediction.


2021 ◽  
Vol 14 (11) ◽  
pp. 7073-7116
Author(s):  
Ingo Bethke ◽  
Yiguo Wang ◽  
François Counillon ◽  
Noel Keenlyside ◽  
Madlen Kimmritz ◽  
...  

Abstract. The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol–cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of sea surface temperature (SST) and T/S-profile observations using the ensemble Kalman filter (EnKF). We describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new forcings, bug fixes, retuning and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the impact of sea ice initialization and climatological reference period: the first (i1) uses a 1980–2010 reference climatology for computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations. We assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The NorESM1 simulations exhibit a moderate historical global surface temperature evolution and tropical climate variability characteristics that compare favourably with observations. The climate biases of NorESM1 using CMIP6 external forcings are comparable to, or slightly larger than those of, the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation (AMOC) strength and Arctic sea ice thickness, too-cold subtropical oceans and northern continents, and a too-warm North Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged, except for a reduced sea ice thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation synchronizes variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show comparable performance. The benefits of DA-assisted initialization are seen globally in the first year of the prediction over a range of variables, also in the atmosphere and over land. External forcings are the primary source of multiyear skills, while added benefit from initialization is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic, and also for temperature over land if the forced signal is removed. Both products show limited success in constraining and predicting unforced surface ocean biogeochemistry variability. However, observational uncertainties and short temporal coverage make biogeochemistry evaluation uncertain, and potential predictability is found to be high. For physical climate prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows back. Posteriori lead-dependent drift correction removes most hindcast differences; applications should therefore benefit from combining the two products. The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, implying predictive potential from better synchronization of circulation variability. Future development will therefore focus on improving the representation of mean state and variability of AMOC and its initialization, in addition to upgrades of the atmospheric component. Other efforts will be directed to refining the anomaly assimilation scheme – to better separate internal and forced signals, to include land and atmosphere initialization and new observational types – and improving biogeochemistry prediction capability. Combined with other systems, NorCPM1 may already contribute to skilful multiyear climate prediction that benefits society.


Author(s):  
Yuwen Liu ◽  
Dejuan Li ◽  
Shaohua Wan ◽  
Fan Wang ◽  
Wanchun Dou ◽  
...  

Author(s):  
Peeyush Kumar ◽  
Ranveer Chandra ◽  
Chetan Bansal ◽  
Shivkumar Kalyanaraman ◽  
Tanuja Ganu ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
pp. 4283-4305
Author(s):  
Tian Tian ◽  
Shuting Yang ◽  
Mehdi Pasha Karami ◽  
François Massonnet ◽  
Tim Kruschke ◽  
...  

Abstract. A substantial part of Arctic climate predictability at interannual timescales stems from the knowledge of the initial sea ice conditions. Among all sea ice properties, its volume, which is a product of sea ice concentration (SIC) and thickness (SIT), is the most responsive parameter to climate change. However, the majority of climate prediction systems are only assimilating the observed SIC due to lack of long-term reliable global observation of SIT. In this study, the EC-Earth3 Climate Prediction System with anomaly initialization to ocean, SIC and SIT states is developed. In order to evaluate the regional benefits of specific initialized variables, three sets of retrospective ensemble prediction experiments are performed with different initialization strategies: ocean only; ocean plus SIC; and ocean plus SIC and SIT initialization. In the Atlantic Arctic, the Greenland–Iceland–Norway (GIN) and Barents seas are the two most skilful regions in SIC prediction for up to 5–6 lead years with ocean initialization; there are re-emerging skills for SIC in the Barents and Kara seas in lead years 7–9 coinciding with improved skills of sea surface temperature (SST), reflecting the impact of SIC initialization on ocean–atmosphere interactions for interannual-to-decadal timescales. For the year 2–9 average, the region with significant skill for SIT is confined to the central Arctic Ocean, covered by multi-year sea ice (CAO-MYI). Winter preconditioning with SIT initialization increases the skill for September SIC in the eastern Arctic (e.g. Kara, Laptev and East Siberian seas) and in turn improve the skill of air surface temperature locally and further expanded over land. SIT initialization outperforms the other initialization methods in improving SIT prediction in the Pacific Arctic (e.g. East Siberian and Beaufort seas) in the first few lead years. Our results suggest that as the climate warming continues and the central Arctic Ocean might become seasonal ice free in the future, the controlling mechanism for decadal predictability may thus shift from sea ice volume to ocean-driven processes.


Sign in / Sign up

Export Citation Format

Share Document