scholarly journals Comparing Atmospheric Correction Performance for Sentinel-2 and Landsat-8 Data

Author(s):  
Bringfried Pflug ◽  
Rudolf Richter ◽  
Raquel de los Reyes ◽  
Peter Reinartz
2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


Author(s):  
C. Hessel ◽  
R. Grompone von Gioi ◽  
J. M. Morel ◽  
G. Facciolo ◽  
P. Arias ◽  
...  

Abstract. We propose a method for the relative radiometric normalization of long, multi-sensor image time series. This allows to increase the revisit time under comparable conditions. Although the relative radiometric normalization is a well-studied problem in the remote sensing community, the availability of an increasing number of images gives rise to new problems. For example, given long series spanning several years, finding features that are maintained through the whole period of time becomes arduous. Instead, we propose in this paper to use automatically detected reference images chosen by maximization of a quality metric. For each image, two affine correction models are robustly estimated using random sample consensus, using the two closest reference images; the final correction is obtained by linear interpolation. For each pair of source and reference images, pseudo-invariant features are obtained using a similarity measure invariant to radiometric changes. A final tone-mapping step outputs the images in the standard 8-bits range. This method is illustrated by the fusion of time series of Sentinel-2 at correction levels 1C, 2A, and Landsat-8 images. By using only the atmospherically corrected Sentinel-2 L2A images as anchors, the full output series inherits this atmospheric correction.


Author(s):  
G. Berdou ◽  
S. Shrestha ◽  
M. Hahn

Abstract. Integration of Sentinel-2 and Landsat-8 imagery is a key factor to provide earth observation data at a global scale with higher temporal resolution. Integration of data from two sensors is possible with the consistent harmonized data framed in common reference and processing, which can be used for comparing geophysical surface characteristics. This study focuses on the analysis of the atmospheric correction methods available for both Landsat-8 and Sentinel-2 products to convert the top of the atmosphere to the bottom of atmosphere reflectance. Other investigations (De Keukelaere, 2018) carried out similar analyses focusing on data acquired over water, while this study emphasises the analyses over land covers. Two processing algorithms iCOR and Sen2COR are utilized to perform atmospheric corrections, and results are statistically and visually compared. Comparisons based on same images processed with different algorithms show very strong correlation for some classes (urban: 0.99), while correlation values around 0.85 were achieved between images from different sensors.


2021 ◽  
Vol 258 ◽  
pp. 112366
Author(s):  
Nima Pahlevan ◽  
Antoine Mangin ◽  
Sundarabalan V. Balasubramanian ◽  
Brandon Smith ◽  
Krista Alikas ◽  
...  

2020 ◽  
Vol 12 (5) ◽  
pp. 833
Author(s):  
Rui Song ◽  
Jan-Peter Muller ◽  
Said Kharbouche ◽  
Feng Yin ◽  
William Woodgate ◽  
...  

Surface albedo is a fundamental radiative parameter as it controls the Earth’s energy budget and directly affects the Earth’s climate. Satellite observations have long been used to capture the temporal and spatial variations of surface albedo because of their continuous global coverage. However, space-based albedo products are often affected by errors in the atmospheric correction, multi-angular bi-directional reflectance distribution function (BRDF) modelling, as well as spectral conversions. To validate space-based albedo products, an in situ tower albedometer is often used to provide continuous “ground truth” measurements of surface albedo over an extended area. Since space-based albedo and tower-measured albedo are produced at different spatial scales, they can be directly compared only for specific homogeneous land surfaces. However, most land surfaces are inherently heterogeneous with surface properties that vary over a wide range of spatial scales. In this work, tower-measured albedo products, including both directional hemispherical reflectance (DHR) and bi-hemispherical reflectance (BHR), are upscaled to coarse satellite spatial resolutions using a new method. This strategy uses high-resolution satellite derived surface albedos to fill the gaps between the albedometer’s field-of-view (FoV) and coarse satellite scales. The high-resolution surface albedo is generated from a combination of surface reflectance retrieved from high-resolution Earth Observation (HR-EO) data and moderate resolution imaging spectroradiometer (MODIS) BRDF climatology over a larger area. We implemented a recently developed atmospheric correction method, the Sensor Invariant Atmospheric Correction (SIAC), to retrieve surface reflectance from HR-EO (e.g., Sentinel-2 and Landsat-8) top-of-atmosphere (TOA) reflectance measurements. This SIAC processing provides an estimated uncertainty for the retrieved surface spectral reflectance at the HR-EO pixel level and shows excellent agreement with the standard Landsat 8 Surface Reflectance Code (LaSRC) in retrieving Landsat-8 surface reflectance. Atmospheric correction of Sentinel-2 data is vastly improved by SIAC when compared against the use of in situ AErosol RObotic NETwork (AERONET) data. Based on this, we can trace the uncertainty of tower-measured albedo during its propagation through high-resolution EO measurements up to coarse satellite scales. These upscaled albedo products can then be compared with space-based albedo products over heterogeneous land surfaces. In this study, both tower-measured albedo and upscaled albedo products are examined at Ground Based Observation for Validation (GbOV) stations (https://land.copernicus.eu/global/gbov/), and used to compare with satellite observations, including Copernicus Global Land Service (CGLS) based on ProbaV and VEGETATION 2 data, MODIS and multi-angle imaging spectroradiometer (MISR).


2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


2019 ◽  
pp. 45
Author(s):  
C. Jara ◽  
J. Delegido ◽  
J. Ayala ◽  
P. Lozano ◽  
A. Armas ◽  
...  

<p>The objective of the present study was to compare the Landsat-8 and Sentinel-2 images to calculate the wetland´s extension, distribution and degree of conservation, in Reserva de Producción de Fauna Chinborazo (RPFCH) protected area located in the Andean region of Ecuador. This process was developed with in situ work in 16 wetlands, distributed in different conservation levels. The Landsat-8 and Sentinel-2 images were processed through a radiometric calibration (restoration of lost lines or píxels and correction of the stripe of the image) and an atmospheric correction (conversion of the digital levels to radiance values), to later calculate the Vegetation spectral indexes: NDVI, SAVI (L = 0.5) where L is a constant of the soil brightness component, EVI2 (improved vegetation index 2), NDWI (standard difference water index), WDRI (wide dynamic range vegetation index) and the Red Edge model that only this one has in Sentinel-2 in this study. Making a classification of the Bofedal ecosystem in satellite images by applying Random Forest, the most important variables with Landsat-8 were EVI2 (37.72%) and SAVI with L = 0.5 (30.97%), while with Sentinel-2 the most important variables correspond to the Red Edge (38.54%) and WDRI (27.06%). With the indices calculated, two categories of analysis were determined: a) wetland integrated by the levels: intervened [1], moderately conserved [2] and conserved [3] and b) other than wetland [4] integrated by areas that do not correspond to this ecosystem. Landsat-8 shows that the percentage of correct classifications of píxels belonging to the wetland category corresponds to: [1] 72.76%, [2] 58.38%, [3] 68.42%, while for the category other [4] were correct 95.15%. With Sentinel-2, the percentage of correct classifications corresponds to [1] 95.00%, [2] 82.60%, [3] 96.25%, while for the category other [4] the correct answers were 98.13%. In this way with Landsat-8 the wetland corresponds to 21.708,54 ha (41.21%), while with Sentinel-2 the wetland represents a total of 20,518 ha (38.95%), of the 52,560 ha that belong to the RPFCH, concluding that Sentinel-2, due to its better spatial resolution, and the incorporation of its new bands in Red Edge, obtains better results in image classification.</p>


Author(s):  
R. F. B. Marujo ◽  
J. G. Fronza ◽  
A. R. Soares ◽  
G. R. Queiroz ◽  
K. R. Ferreira

Abstract. Accurate and consistent Surface Reflectance estimation from optical remote sensor observations is directly dependant on the used atmospheric correction processor and the differences caused by it may have implications on further processes, e.g. classification. Brazil is a continental scale country with different biomes. Recently, new initiatives, as the Brazil Data Cube Project, are emerging and using free and open data policy data, more specifically medium spatial resolution sensor images, to create image data cubes and classify the Brazilian territory crops. For this reason, the purpose of this study is to verify, on Landsat-8 and Sentinel-2 images for the Brazilian territory, the suitability of the atmospheric correction processors maintained by their image providers, LaSRC from USGS and Sen2cor from ESA, respectively. To achieve this, we tested the surface reflectance products from Landsat-8 processed through LaSRC and Sentinel-2 processed through LaSRC and Sen2cor comparing to a reference dataset computed by ARCSI and AERONET. The obtained results point that Landsat-8/OLI images atmospherically corrected using the LaSRC corrector are consistent to the surface reflectance reference and other atmospheric correction processors studies, while for Sentinel-2/MSI images, Sen2cor performed best. Although corrections over Sentinel-2/MSI data weren’t as consistent as in Landsat-8/OLI corrections, in comparison to the surface reflectance references, most of the spectral bands achieved acceptable APU results.


2020 ◽  
Vol 12 (8) ◽  
pp. 1285 ◽  
Author(s):  
Pannimpullath Remanan Renosh ◽  
David Doxaran ◽  
Liesbeth De Keukelaere ◽  
Juan Ignacio Gossn

The present study assesses the performance of state-of-the-art atmospheric correction (AC) algorithms applied to Sentinel-2-MultiSpectral Instrument (S2-MSI) and Sentinel-3-Ocean and Land Color Instrument (S3-OLCI) data recorded over moderately to highly turbid estuarine waters, considering the Gironde Estuary (SW France) as a test site. Three spectral bands of water-leaving reflectance ( R h o w ) are considered: green (560 nm), red (655 or 665 nm) and near infrared (NIR) (865 nm), required to retrieve the suspended particulate matter (SPM) concentrations in clear to highly turbid waters (SPM ranging from 1 to 2000 mg/L). A previous study satisfactorily validated Acolite short wave infrared (SWIR) AC algorithm for Landsat-8-Operational Land Imager (L8-OLI) in turbid estuarine waters. The latest version of Acolite Dark Spectrum Fitting (DSF) is tested here and shows very good agreement with Acolite SWIR for OLI data. L8-OLI satellite data corrected for atmospheric effects using Acolite DSF are then used as a reference to assess the validity of atmospheric corrections applied to other satellite data recorded over the same test site with a minimum time difference. Acolite DSF and iCOR (image correction for atmospheric effects) are identified as the best performing AC algorithms among the tested AC algorithms (Acolite DSF, iCOR, Polymer and C2RCC (case 2 regional coast color)) for S2-MSI. Then, the validity of six different AC algorithms (OLCI Baseline Atmospheric Correction (BAC), iCOR, Polymer, Baseline residual (BLR), C2RCC-V1 and C2RCC-V2) applied to OLCI satellite data is assessed based on comparisons with OLI and/or MSI Acolite DSF products recorded on a same day with a minimum time lag. Results show that all the AC algorithms tend to underestimate R h o w in green, red and NIR bands except iCOR in green and red bands. The iCOR provides minimum differences in green (slope = 1.0 ± 0.15, BIAS = 1.9 ± 4.5% and mean absolute percentage error (MAPE) = 12 ± 5%) and red (slope = 1.0 ± 0.17, BIAS = −9.8 ± 9% and MAPE = 28 ± 20%) bands with Acolite DSF products from OLI and MSI data. For the NIR band, BAC provides minimum differences (slope = 0.7 ± 0.13, BIAS = −33 ± 17% and MAPE = 55 ± 20%) with Acolite DSF products from OLI and MSI data. These results based on comparisons between almost simultaneous satellite products are supported by match-ups between satellite-derived and field-measured SPM concentrations provided by automated turbidity stations. Further validation of satellite products based on rigorous match-ups with in-situ R h o w measurements is still required in highly turbid waters.


Sign in / Sign up

Export Citation Format

Share Document