scholarly journals Large Scale Unsupervised Domain Adaptation of Segmentation Networks with Adversarial Learning

Author(s):  
Xueqing Deng ◽  
Hsiuhan Lexie Yang ◽  
Nikhil Makkar ◽  
Dalton Lunga
2020 ◽  
Vol 34 (05) ◽  
pp. 7480-7487
Author(s):  
Yu Cao ◽  
Meng Fang ◽  
Baosheng Yu ◽  
Joey Tianyi Zhou

Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate the problem, we investigate unsupervised domain adaptation on RC, wherein a model is trained on the labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, a model can not generalize well from one domain to another. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable performance to supervised models on multiple large-scale benchmark datasets.


2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Baoying Chen ◽  
Shunquan Tan

Recently, various Deepfake detection methods have been proposed, and most of them are based on convolutional neural networks (CNNs). These detection methods suffer from overfitting on the source dataset and do not perform well on cross-domain datasets which have different distributions from the source dataset. To address these limitations, a new method named FeatureTransfer is proposed in this paper, which is a two-stage Deepfake detection method combining with transfer learning. Firstly, The CNN model pretrained on a third-party large-scale Deepfake dataset can be used to extract the more transferable feature vectors of Deepfake videos in the source and target domains. Secondly, these feature vectors are fed into the domain-adversarial neural network based on backpropagation (BP-DANN) for unsupervised domain adaptive training, where the videos in the source domain have real or fake labels, while the videos in the target domain are unlabelled. The experimental results indicate that the proposed method FeatureTransfer can effectively solve the overfitting problem in Deepfake detection and greatly improve the performance of cross-dataset evaluation.


2020 ◽  
Vol 34 (07) ◽  
pp. 11410-11417
Author(s):  
Wenjing Li ◽  
Zhongcheng Wu

This paper considers a novel problem, named One-View Learning (OVL), in human retrieval a.k.a. person re-identification (re-ID). Unlike fully-supervised learning, OVL only requires pretty cheap annotation cost: labeled training images are only provided from one camera view (source view/domain), while the annotations of training images from other camera views (target views/domains) are not available. OVL is a problem of multi-target open set domain adaptation that is difficult for existing domain adaptation methods to handle. This is because 1) unlabeled samples are drawn from multiple target views in different distributions, and 2) the target views may contain samples of “unknown identity” that are not shared by the source view. To address this problem, this work introduces a novel one-view learning framework for person re-ID. This is achieved by adversarial multi-view learning (AMVL) and adversarial unknown rejection learning (AURL). The former learns a multi-view discriminator by adversarial learning to align the feature distributions between all views. The later is designed to reject unknown samples from target views through adversarial learning with two unknown identity classifiers. Extensive experiments on three large-scale datasets demonstrate the advantage of the proposed method over state-of-the-art domain adaptation and semi-supervised methods.


Sign in / Sign up

Export Citation Format

Share Document