Analysis of Ionospheric Irregularities in Low Latitude During Geomagnetic Storm Using GISTM Network

Author(s):  
Dessi Marlia ◽  
Falin Wu ◽  
Sri ekawati ◽  
Asnawi Husin ◽  
Sefria Anggarani ◽  
...  
2021 ◽  
Vol 13 (5) ◽  
pp. 1010
Author(s):  
Lehui Wei ◽  
Chunhua Jiang ◽  
Yaogai Hu ◽  
Ercha Aa ◽  
Wengeng Huang ◽  
...  

This study presents observations of nighttime spread F/ionospheric irregularities and spread Es at low and middle latitudes in the South East Asia longitude of China sectors during the recovery phase of the 7–9 September 2017 geomagnetic storm. In this study, multiple observations, including a chain of three ionosondes located about the longitude of 100°E, Swarm satellites, and Global Navigation Satellite System (GNSS) ROTI maps, were used to study the development process and evolution characteristics of the nighttime spread F/ionospheric irregularities at low and middle latitudes. Interestingly, spread F and intense spread Es were simultaneously observed by three ionosondes during the recovery phase. Moreover, associated ionospheric irregularities could be observed by Swarm satellites and ground-based GNSS ionospheric TEC. Nighttime spread F and spread Es at low and middle latitudes might be due to multiple off-vertical reflection echoes from the large-scale tilts in the bottom ionosphere. In addition, we found that the periods of the disturbance ionosphere are ~1 h at ZHY station, ~1.5 h at LSH station and ~1 h at PUR station, respectively. It suggested that the large-scale tilts in the bottom ionosphere might be produced by LSTIDs (Large scale Traveling Ionospheric Disturbances), which might be induced by the high-latitude energy inputs during the recovery phase of this storm. Furthermore, the associated ionospheric irregularities observed by satellites and ground-based GNSS receivers might be caused by the local electric field induced by LSTIDs.


2016 ◽  
Vol 121 (4) ◽  
pp. 3421-3438 ◽  
Author(s):  
B. Nava ◽  
J. Rodríguez‐Zuluaga ◽  
K. Alazo‐Cuartas ◽  
A. Kashcheyev ◽  
Y. Migoya‐Orué ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 708 ◽  
Author(s):  
Liang Huang ◽  
Yi Liu ◽  
Qiong Tang ◽  
Guanyi Chen ◽  
Zhuangkai Wang ◽  
...  

By using multi-satellite observations of the L1 signal-to-noise ratio (SNR) from the Cyclone Global Navigation Satellite System (CYGNSS) taken in 2017, we present the occurrence of nighttime topside ionospheric irregularities in low-latitude and equatorial regions. The most significant finding of this study is the existence of longitudinal structures with a wavenumber 4 pattern in the topside irregularities. This suggests that lower atmospheric waves, especially a daytime diurnal eastward-propagating zonal wave number-3 nonmigrating tide (DE3), might play an important role in the generation of topside plasma bubbles during the low solar minimum. Observations of scintillation events indicate that the maximum occurrence of nighttime topside ionospheric irregularities occurs on the magnetic equator during the equinoxes. The current work, which could be regarded as an important update of the previous investigations, would be readily for the further global analysis of the topside ionospheric irregularities.


Sign in / Sign up

Export Citation Format

Share Document