The first Above-ground Biomass map of the Philippines produced using Remote sensing and Machine learning

Author(s):  
Aman Araza ◽  
Martin Herold ◽  
Lars Hein ◽  
Marcela Quinones
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 601
Author(s):  
Prakriti Sharma ◽  
Larry Leigh ◽  
Jiyul Chang ◽  
Maitiniyazi Maimaitijiang ◽  
Melanie Caffé

Current strategies for phenotyping above-ground biomass in field breeding nurseries demand significant investment in both time and labor. Unmanned aerial vehicles (UAV) can be used to derive vegetation indices (VIs) with high throughput and could provide an efficient way to predict forage yield with high accuracy. The main objective of the study is to investigate the potential of UAV-based multispectral data and machine learning approaches in the estimation of oat biomass. UAV equipped with a multispectral sensor was flown over three experimental oat fields in Volga, South Shore, and Beresford, South Dakota, USA, throughout the pre- and post-heading growth phases of oats in 2019. A variety of vegetation indices (VIs) derived from UAV-based multispectral imagery were employed to build oat biomass estimation models using four machine-learning algorithms: partial least squares (PLS), support vector machine (SVM), Artificial neural network (ANN), and random forest (RF). The results showed that several VIs derived from the UAV collected images were significantly positively correlated with dry biomass for Volga and Beresford (r = 0.2–0.65), however, in South Shore, VIs were either not significantly or weakly correlated with biomass. For Beresford, approximately 70% of the variance was explained by PLS, RF, and SVM validation models using data collected during the post-heading phase. Likewise for Volga, validation models had lower coefficient of determination (R2 = 0.20–0.25) and higher error (RMSE = 700–800 kg/ha) than training models (R2 = 0.50–0.60; RMSE = 500–690 kg/ha). In South Shore, validation models were only able to explain approx. 15–20% of the variation in biomass, which is possibly due to the insignificant correlation values between VIs and biomass. Overall, this study indicates that airborne remote sensing with machine learning has potential for above-ground biomass estimation in oat breeding nurseries. The main limitation was inconsistent accuracy in model prediction across locations. Multiple-year spectral data, along with the inclusion of textural features like crop surface model (CSM) derived height and volumetric indicators, should be considered in future studies while estimating biophysical parameters like biomass.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


2010 ◽  
Vol 53 (S1) ◽  
pp. 176-183 ◽  
Author(s):  
Min Xu ◽  
ChunXiang Cao ◽  
QingXi Tong ◽  
ZengYuan Li ◽  
Hao Zhang ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 582 ◽  
Author(s):  
Lin Chen ◽  
Chunying Ren ◽  
Bai Zhang ◽  
Zongming Wang ◽  
Yanbiao Xi

Accurate forest above-ground biomass (AGB) is crucial for sustaining forest management and mitigating climate change to support REDD+ (reducing emissions from deforestation and forest degradation, plus the sustainable management of forests, and the conservation and enhancement of forest carbon stocks) processes. Recently launched Sentinel imagery offers a new opportunity for forest AGB mapping and monitoring. In this study, texture characteristics and backscatter coefficients of Sentinel-1, in addition to multispectral bands, vegetation indices, and biophysical variables of Sentinal-2, based on 56 measured AGB samples in the center of the Changbai Mountains, China, were used to develop biomass prediction models through geographically weighted regression (GWR) and machine learning (ML) algorithms, such as the artificial neural network (ANN), support vector machine for regression (SVR), and random forest (RF). The results showed that texture characteristics and vegetation biophysical variables were the most important predictors. SVR was the best method for predicting and mapping the patterns of AGB in the study site with limited samples, whose mean error, mean absolute error, root mean square error, and correlation coefficient were 4 × 10−3, 0.07, 0.08 Mg·ha−1, and 1, respectively. Predicted values of AGB from four models ranged from 11.80 to 324.12 Mg·ha−1, and those for broadleaved deciduous forests were the most accurate, while those for AGB above 160 Mg·ha−1 were the least accurate. The study demonstrated encouraging results in forest AGB mapping of the normal vegetated area using the freely accessible and high-resolution Sentinel imagery, based on ML techniques.


2002 ◽  
Vol 11 (5) ◽  
pp. 393-399 ◽  
Author(s):  
Michael A. Lefsky ◽  
Warren B. Cohen ◽  
David J. Harding ◽  
Geoffrey G. Parker ◽  
Steven A. Acker ◽  
...  

2016 ◽  
Vol 5 (4) ◽  
pp. 45 ◽  
Author(s):  
Xiaohuan Xi ◽  
Tingting Han ◽  
Cheng Wang ◽  
Shezhou Luo ◽  
Shaobo Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document