Mobile Machine Vision for Railway Surveillance System using Deep Learning Algorithm

Author(s):  
Kit Guan Lim ◽  
Daniel Siruno ◽  
Min Keng Tan ◽  
Chung Fan Liau ◽  
Sha Huang ◽  
...  
2020 ◽  
Vol 40 (1) ◽  
pp. 47-52
Author(s):  
Dae-Hyun Kim ◽  
Seung Bin Boo ◽  
Hyeon Cheol Hong ◽  
Won Gu Yeo ◽  
Nam Yong Lee

Author(s):  
Dan Luo

Background: As known that the semi-supervised algorithm is a classical algorithm in semi-supervised learning algorithm. Methods: In the paper, it proposed improved cooperative semi-supervised learning algorithm, and the algorithm process is presented in detailed, and it is adopted to predict unlabeled electronic components image. Results: In the experiments of classification and recognition of electronic components, it show that through the method the accuracy the proposed algorithm in electron device image recognition can be significantly improved, the improved algorithm can be used in the actual recognition process . Conclusion: With the continuous development of science and technology, machine vision and deep learning will play a more important role in people's life in the future. The subject research based on the identification of the number of components is bound to develop towards the direction of high precision and multi-dimension, which will greatly improve the production efficiency of electronic components industry.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document