Inverse modeling of dynamical system-network architecture with identification network and adaptation network

Author(s):  
T. Kimoto ◽  
Y. Yaginuma ◽  
S. Nagata ◽  
K. Asakawa
2020 ◽  
Author(s):  
Daniel Udvary ◽  
Philipp Harth ◽  
Jakob H. Macke ◽  
Hans-Christian Hege ◽  
Christiaan P.J. de Kock ◽  
...  

Developmental programs that guide neurons and their neurites into specific subvolumes of the mammalian neocortex give rise to lifelong constraints for the formation of synaptic connections. To what degree do these constraints affect cortical wiring diagrams? Here we introduce an inverse modeling approach to show how cortical networks would appear if they were solely due to the spatial distributions of neurons and neurites. We find that neurite packing density and morphological diversity will inevitably translate into non-random pairwise and higher-order connectivity statistics. More importantly, we show that these non-random wiring properties are not arbitrary, but instead reflect the specific structural organization of the underlying neuropil. Our predictions are consistent with the empirically observed wiring specificity from subcellular to network scales. Thus, independent from learning and genetically encoded wiring rules, many of the properties that define the neocortex’ characteristic network architecture may emerge as a result of neuron and neurite development.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document