scholarly journals Dimensionality reduction using compressed sensing and its application to a large-scale visual recognition task

Author(s):  
Jie Yang ◽  
Abdesselam Bouzerdoum ◽  
Fok Hing Chi Tivive ◽  
Son Lam Phung
2017 ◽  
Vol 26 (4) ◽  
pp. 1923-1938 ◽  
Author(s):  
Jianping Fan ◽  
Tianyi Zhao ◽  
Zhenzhong Kuang ◽  
Yu Zheng ◽  
Ji Zhang ◽  
...  

2011 ◽  
Vol 25 (4) ◽  
pp. 645-651 ◽  
Author(s):  
Dionisio Andújar ◽  
Ángela Ribeiro ◽  
Cesar Fernández-Quintanilla ◽  
José Dorado

The feasibility of visual detection of weeds for map-based patch spraying systems needs to be assessed for use in large-scale cropping systems. The main objective of this research was to evaluate the reliability and profitability of using maps of Johnsongrass patches constructed at harvest to predict spatial distribution of weeds during the next cropping season. Johnsongrass patches visually were assessed from the cabin of a combine harvester in three corn fields and were compared with maps obtained in the subsequent year prior to postemergence herbicide application. There was a good correlation (71% on average) between the position of Johnsongrass patches on the two maps (fall vs. spring). The highest correlation (82%) was obtained with relatively large infestations, whereas the lowest (58%) was obtained when the infested area was smaller. Although the relative positions of the patches remained almost unchanged from 1 yr to the next, the infested area increased in all fields during the 4-yr experimental period. According to our estimates, using a strategy based on spraying full rates of herbicides to patches recorded in the map generated in the previous fall resulted in higher net returns than spraying the whole field, either at full or half rate. This site-specific strategy resulted in an average 65% reduction in the volume of herbicide applied to control this weed.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sai Kiranmayee Samudrala ◽  
Jaroslaw Zola ◽  
Srinivas Aluru ◽  
Baskar Ganapathysubramanian

Dimensionality reduction refers to a set of mathematical techniques used to reduce complexity of the original high-dimensional data, while preserving its selected properties. Improvements in simulation strategies and experimental data collection methods are resulting in a deluge of heterogeneous and high-dimensional data, which often makes dimensionality reduction the only viable way to gain qualitative and quantitative understanding of the data. However, existing dimensionality reduction software often does not scale to datasets arising in real-life applications, which may consist of thousands of points with millions of dimensions. In this paper, we propose a parallel framework for dimensionality reduction of large-scale data. We identify key components underlying the spectral dimensionality reduction techniques, and propose their efficient parallel implementation. We show that the resulting framework can be used to process datasets consisting of millions of points when executed on a 16,000-core cluster, which is beyond the reach of currently available methods. To further demonstrate applicability of our framework we perform dimensionality reduction of 75,000 images representing morphology evolution during manufacturing of organic solar cells in order to identify how processing parameters affect morphology evolution.


1975 ◽  
Vol 66 (3) ◽  
pp. 289-298 ◽  
Author(s):  
ANTHONY GALE ◽  
GRAHAM SPRATT ◽  
BRUCE CHRISTIE ◽  
ADRIAN SMALLBONE

2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2019 ◽  
Vol 10 (3) ◽  
pp. 221-239
Author(s):  
Enrico Au-Yeung

Abstract The problem of how to find a sparse representation of a signal is an important one in applied and computational harmonic analysis. It is closely related to the problem of how to reconstruct a sparse vector from its projection in a much lower-dimensional vector space. This is the setting of compressed sensing, where the projection is given by a matrix with many more columns than rows. We introduce a class of random matrices that can be used to reconstruct sparse vectors in this paradigm. These matrices satisfy the restricted isometry property with overwhelming probability. We also discuss an application in dimensionality reduction where we initially discovered this class of matrices.


Sign in / Sign up

Export Citation Format

Share Document